International Journal of Engineering، جلد ۲۸، شماره ۱۱، صفحات ۱۵۸۹-۱۵۹۶

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A Robust Image Denoising Technique in the Contourlet Transform Domain
چکیده انگلیسی مقاله The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE shrinkage and bilateral filter respectively. Moreover, SURE-LET strategy is modified to minimize the estimation of the Mean Square Error (MSE) between the clean image and the denoised one in the NSCT domain. The simulation testing has been carried on under the different noise level, and the denoising effect has been evaluated by using the Peak Signal to Noise Ratio (PSNR). The obtained results for different kinds of sample image show that the proposed method in this paper can preserve most important information of images, remove Gaussian white noise more effectively, and get a higher PSNR value, which also has a better visual effect.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله ehsan ehsaeyan |
electrical engineering, sirjan university of technology

نشانی اینترنتی
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/409/article-409-2062413.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات