International Journal of Engineering، جلد ۳۰، شماره ۱۱، صفحات ۱۷۴۶-۱۷۵۱

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)
چکیده انگلیسی مقاله Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Prediction of natural phenomena always suffers from uncertainty in the environment and incompleteness of data. However, various studies have been reported for prediction of the air quality index but all of them suffer from uncertainty and imprecision associated to the incompleteness of knowledge and imprecise input measures. This article takes advantages of learning of adaptive neural networks alongside in new environment. Furthermore, it presents an Adaptive Neuro-Type-2 Fuzzy Inference System (ANT2FIS) to address the uncertainty and imprecision in air quality prediction. The data set of this study was collected from Tehran municipality official website for the last five years (2012-2017). The results reveal that the ANT2FIS prediction method is more reliable and is capable of handling uncertainty compared to the other counterpart methods. The performance results on real data set show the superiority of the ANT2FIS model in the prediction process with an average accuracy of 94% (AUC 99%) compared to other related works. These results are promising for early prediction of the natural disasters and prevention of its side effects.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله Rahil Hosseini |
Computer Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehr

Mahdi Mazinani |
Electronic Engineering, Shahr-e-Qods Branch, Islamic Azad University

Aref Safari |
Artificial Intellegence, Shahr-e-Qods Branch, Islamic Azad University

نشانی اینترنتی
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/409/article-409-2061980.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات