International Journal of Engineering، جلد ۳۱، شماره ۱، صفحات ۳۲-۳۷

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Predictions of Tool Wear in Hard Turning of AISI4140 Steel through Artificial Neural Network, Fuzzy Logic and Regression Models
چکیده انگلیسی مقاله The tool wear is an unavoidable phenomenon when using coated carbide tools during hard turning of hardened steels. This work focuses on the prediction of tool wear using regression analysis and artificial neural network (ANN).The work piece taken into consideration is AISI4140 steel hardened to 47 HRC. The models are developed from the results of experiments, which are carried out based on Design of experiments (Response surface methodology). The cutting speed, feed and depth of cut are taken as the inputs and the wear is the output. The results reveal that the ANN provides better accuracy when compared to Regression analysis.
کلیدواژه‌های انگلیسی مقاله AISI4140, ANN, Hard Turning, Regression

نویسندگان مقاله Natesan Kanthavelkumaran |
Mechanical Engineering, Arunachala College of Engineering for Women, Kanyakumari, Tamilnadu, India

Dinakaran D |
Mechanical Engineering, Hindustan University, Chennai

Rajeev D |
Mechanical Engineering, Mar Ephraem College of Engineering and Technology

Austin N |
Mechanical Engineering, Mar Ephraem College of Engineering and Technology

نشانی اینترنتی
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/409/article-409-2061931.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات