این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 13 آبان 1404
Journal of Medical Signals and Sensors
، جلد ۳، شماره ۲، صفحات ۰-۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Introducing kernel based morphology as an enhancement method for mass classification on mammography
چکیده انگلیسی مقاله
Since mammography images are in low-contrast, applying enhancement techniques as a pre-processing step are wisely recommended in classification of the abnormal lesions into benign or malignant. A new kind of structural enhancement is proposed by morphological operator which introduces an optimal Gaussian Kernel primitive, the kernel parameters are optimized the use of Genetic Algorithm. We also take the advantageous of Optical Density (OD) images to promote the diagnosis rate. OD images are free from scanner type, and their values are the degree of blackness presented at the given point on the film and distinguish small differences. When the proposed enhancement method is applied on both the Gray Level (GL) images and their OD values respectively, morphological patterns get bolder on gray level images, therefore; Local Binary Patterns (LBP) are extracted from this kind of images. Applying the enhancement method on OD images causes to remove some background pixels. Those pixels that are more eligible to be mass are remained, and some statistical texture features are extracted. Support Vector Machine is used for both approaches, and the final decision is made by combining these two classifiers. The classification performance rate is evaluated by A z , under the receiver operating characteristic (ROC) curve. The designed method yields A z = 0.9231 which demonstrates good results.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
آذردخت امیرزادی | azardokht amirzadi
رضا عزمی | reza azmi
نشانی اینترنتی
http://www.jmss.mui.ac.ir/index.php/jmss/article/view/147
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Articles
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات