این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
پژوهش های جغرافیای طبیعی، جلد ۵۰، شماره ۱، صفحات ۶۹-۸۵

عنوان فارسی آنالیز مکانی‌- زمانی دقت داده ‌های ماهواره‌ای TRMM برای برآورد شدت خشک‌سالی مبتنی بر بارش در محدودۀ ایران مرکزی
چکیده فارسی مقاله بیشتر سیستم‏های ارزیابی خشک‏سالی عمدتاً بر مبنای داده‏های بارش استوارند. تحقیق حاضر، با هدف آنالیز مکانی و زمانی دقت داده‏های باران ماهواره TRMM در محدوده ایران مرکزی برای تهیه نقشه توزیع مکانی خشک‏سالی مبتنی بر بارش در طی دوره آماری 2001 ـ 2005 انجام شده است. در ایـن پژوهش، از داده‏های بارش ماهانه 50 ایستگاه سینوپتیک و سری داده‏های ماهانه TRMM-3B43 V7 با مقیاس مکانی 0.25°×0.25° استفاده شده است. پس از پردازش اولیه، نخست داده‏های ماهواره‏ای و داده‏های مشاهده‏ای باران در سه مقیاس زمانی ماهانه، فصلی، و سالانه مقایسه تطبیقی شد. پس از حصول اطمینان از دقت بالای این داده‏ها، نقشه شدت خشک‏سالی مبتنی بر بارش با استفاده از داده‏های ماهواره‏ای به‏دست آمد. ارزیابی دقت نقشه توزیع مکانی خشک‏سالی مبتنی بر داده‏های بارش ماهواره‏ای بر اساس مقایسه با نقشه توزیع مکانی خشک‏سالی مبتنی بر داده‏های بارش زمینی و داده‏های رطوبت خاک انجام گرفته است. نتایج بررسی معیارهای ارزیابی نشان داد که شدت خشک‏سالی برآوردشده به وسیله داده‏های TRMM در انطباق با نقشه شدت خشک‏سالی حاصل از داده‏های بارش و داده‏های رطوبت زمینی از بیشترین ضریب همبستگی به‏ترتیب 94/0 و 71/0 و همچنین کمترین خطای برآوردی به‏ویژه در کلاس‏های شدت خشک‏سالی ملایم، متوسط، و شدید برخوردار بوده است.
کلیدواژه‌های فارسی مقاله ارزیابی، ایران مرکزی، باران ماهواره، خشک‌سالی، سنجش از دور،

عنوان انگلیسی Spatio-Temporal Analysis of the Accuracy of TRMM Satellite Data to Estimate the Severity of a Drought Based on Precipitation in the Area of Central Iran
چکیده انگلیسی مقاله Extanded Abstract Introduction Precipitation data have been widely used in many earth science applications ranging from crop yield estimates, tropical infectious diseases, drought and flood monitoring. However, in many tropical regions and parts of the mid-latitudes, rainfall estimates still remain a major challenge due to sparse rain gauges. To better develop applications for these regions, it is necessary to have rainfall data with adequate spatial and temporal resolutions. Precipitation data plays the key role in drought monitoring. Rain gauges are the mainly measuring methods for precipitation but they are concentrated in developed countries and are spare in developing countries and remote areas in the world. Researchers have shown that remote sensing techniques using space-borne sensors provide an excellent complement to continuous monitoring of rain events both spatially and temporally. Microwave and Visible/Infrared are the main forms of remote sensing technologies; both have varied advantages in terms of imaging accuracy and spatial-temporal resolutions. So, the fine spatial-temporal precipitation products need the coalescence of both. Tropical Precipitation Measuring Mission (TRMM) carrying sensors on precipitation provides the opportunity for fine spatial-temporal precipitation products. In this research for Central Iran, the precipitation data of TRMM satellite was evaluated and used to estimate the severity of a drought based on precipitation. Materials and Methods Central Iran is located between 27N-37N latitudes and 48E-61E longitudes and has an area of about 837,184 km2. There are 50 synoptic stations within the area. The data set used includes monthly precipitation depth from both synoptic stations and TRMM data (3B43 V.7, in ASCII format). A five year (2001–2005) period were chosen for the analysis. The accuracy of precipitation data that are used from synoptic stations and TRMM satellite are provided by the source provider. Firstly, the evaluation of TRMM satellite data was measured using coefficient of determination (R2), mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) in 95% confidence levels. Then, remote sensing data of TRMM are used to provide the required data of precipitation drought index in central Iran for mapping the spatial distribution of drought. Finally, accuracy of the PDI drought index based on satellite data carried out using the evaluation criteria compared with drought spatial distribution map of the PDI based on ground-based precipitation measurements data and soil moisture values of 50 synoptic stations. Results and Discussion In this study for the first time, a comparison between monthly rainfall values estimated by satellite products and rain gauge observations was implemented over the Central Iran. The validation of TRMM 3B43 data were performed at monthly, season and annual scales. The average of monthly rainfall, seasonal and annual for all selected synoptic stations and TRMM data were compared during the period 2001-2005. TRMM data at all time steps except August, estimates the average of monthly rainfall more than observed data. The correlation coefficient between the average of monthly rainfall, seasonal and annual rain gauge and TRMM has shown that this ratio is variable between 0.45 to 0.94 for all time steps, the average of this ratio is equal to 0.76. Highest and lowest values of R2 at monthly time step obtained for April (0.92) and June (0.45) respectively. In this time step, lowest and Highest values of statistical error criteria obtained for June and January, respectively. The seasonal time step, the highest and lowest correlation is related to the spring and summer with determination coefficient (R2) of 0.94 and 0.64, respectively. In this time step, lowest and Highest values of statistical error criteria obtained for summer and winter, respectively. Generally, TRMM data performs best in summer, but worst in winter, which is likely to be associated with the effects of snow/ice-covered surfaces and shortcomings of precipitation retrieval algorithms. The correlation coefficient for the annual time step is equal to 0.83. The results of statistical criteria showed that TRMM rainfall data in all time steps overestimated for all months except of August. The lowest to the highest of statistical error criteria obtained for monthly, Seasonal and annually rainfall data, respectively. In the next step, spatial distribution of drought based on measured data from ground stations and TRMM data over the period 2001-2005 obtained from using Precipitation Drought Index (PDI) method in study area. The results of the statistical criteria of conformity assessment PDI spatial distribution map based on TRMM data with corresponding pixels spatial distribution map based on the synoptic stations precipitation data showed that the drought severity map based on TRMM data had a high precision and good conformity with ground data (R2=0.89, ME=0.08, MAE=0.14, RMSE=0.19). Also, the results of the evaluation criteria showed that PDI index in accordance with soil moisture values had the significant correlation (0.71) and the lowest estimation error (2.33). Conclusion In this research, for estimation of drought severity index based on precipitation, the monthly precipitation data of TRMM satellite (3B43) was evaluated. The evaluation was measured using coefficient of determination (R2), mean error (ME), mean absolute error (MAE) and root mean square error (RMSE). This analysis has demonstrated that the TRMM rainfall products show very good agreement with gauge data over the selected area of Central Iran on monthly timescales and 0.25° space scales. In conclusion, it can be said that the satellite-based rainfall, e.g. TRMM data, have good potential for useful application to hydrological simulation and water balance calculations at monthly or seasonal time steps, which is a useful merit for regions where rain gauge observations are sparse or of bad quality. However, several shortcomings, such as the TRMM overestimates the rainfall in some years and areas and underestimates in other years and areas, and failed to detect the extreme rainfall, reduced the accuracy of stream flow simulation at short time steps and other applications including drought monitoring and flood forecasting. The above mentioned conclusions indicate that it is necessary to further develop algorithms of satellite-based rainfall estimation in terms of both the accuracy and spatiotemporal resolutions of rainfall estimates.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله یعقوب نیازی |
دانش ‏آموختة دکتری علوم و مهندسی آبخیزداری، دانشکدة منابع طبیعی، دانشگاه یزد

علی طالبی |
استاد گروه آبخیزداری دانشکدة منابع طبیعی، دانشگاه یزد

محمد حسین مختاری |
استادیار گروه مدیریت مناطق خشک و بیابانی دانشکدة منابع طبیعی، دانشگاه یزد

مجید وظیفه دوست |
استادیار گروه مهندسی آب دانشگاه گیلان


نشانی اینترنتی https://jphgr.ut.ac.ir/article_68021_98d03daa16ab4dea2424ed64ec29ac61.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/1375/article-1375-948980.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات