این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 1 اسفند 1404
بیماری های پستان
، جلد ۵، شماره ۴، صفحات ۲۳-۳۴
عنوان فارسی
پیش بینی عود مجدد سرطان پستان به کمک سه تکنیک داده کاوی
چکیده فارسی مقاله
مقدمه: تعداد و اندازه پایگاه داده های پزشکی به سرعت در حال افزایش است و مدل های توسعه یافته تکنیک داده کاوی می توانند برای پزشکان جهت کمک در تصمیم گیری موثر و کاربردی باشند. هدف اصلی از این مقاله، گزارش یک پروژه تحقیقاتی به منظور مقایسه الگوریتم های مختلف داده کاوی از طریق مقایسه حساسیت، ویژگی و دقت بین آنها، جهت انتخاب دقیق ترین مدل برای پیش بینی عود مجدد سرطان پستان در زنان مبتلا بوده است. در حقیقت بیان کاربرد عملی داده کاوی در حوزه سرطان پستان با استفاده از داده های ثبت شده در پایگاه داده است که به فراهم کردن اطلاعات ضروری و دانش مورد نیاز پزشکان در تصمیم گیری بهتر کمک می کند. مواد و روش ها: این تحقیق در خصوص بیماران مبتلا به سرطان پستان که حداقل هرکدام به مدت دو سال تحت پیگیری بوده اند، انجام شد. اطلاعات این بیماران در مرکز تحقیقات سرطان پستان جهاد دانشگاهی برای پیگیری اقدامات درمانی ثبت و بیماران حداقل به مدت دو سال پس از تشخیص، تحت نظر این مرکز بوده و پیگیری های بعدی برای آنها انجام شده است. به منظور توسعه مدل های پیش بینی جهت پیش بینی عود سرطان پستان، از درختان تصمیم گیری(C5.0)، ماشین بردار پشتیبان(SVM: Support Vector Machines) و تکنیک های شبکه های عصبی مصنوعی(Artificial Neural Networks :ANNs) با بهره-گیری از پایگاه داده مذکور استفاده شده است. نتایج: بررسی های صورت گرفته نشان می دهد که دقت در سه الگوریتم داده کاوی، یعنی درخت تصمیم گیری، ANN و SVM به ترتیب 936/0 ،947/0 و 957/0 بوده است. بحث و نتیجه گیری: مدل طبقه بندی SVM در پیش بینی عود مجدد سرطان پستان، حداقل میزان خطا و بیشترین دقت را داشت که بالاتر از درخت تصمیم گیری و مدل ANN بود و دقت پیش بینی در مدل درخت تصمیم گیری(C5.0) نیز پایین ترین میزان در بین سه مدل پیش بینی را نشان داد. نتایج به دست آمده حاکی از افزایش درصد صحت نتایج، با بهره گیری از روش های تقویت و هرس کردن بوده است.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Using Data Mining Techniques for Prediction Breast Cancer Recurrence
چکیده انگلیسی مقاله
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
لیلا قاسم احمد |
نشانی اینترنتی
http://www.ijbd.ir/browse.php?a_code=A-10-222-2&slc_lang=fa&sid=fa
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
بیماریهای پستان
نوع مقاله منتشر شده
پژوهشی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات