این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 6 آذر 1404
پژوهش های جغرافیای طبیعی
، جلد ۴۹، شماره ۳، صفحات ۴۰۹-۴۲۲
عنوان فارسی
برآورد مشخصه های برف به روش های موجک و زمین آمار (مطالعۀ موردی: حوضه های آبریز شمال غرب کشور)
چکیده فارسی مقاله
در این تحقیق، با بهکارگیری تبدیل موجک، به بررسی روش شبکه عصبی- موجک و زمینآمار در برآورد توزیع مکانی سه مؤلفه ارتفاع برف، چگالی برف، و ارتفاع آب معادل برف حوضههای آبریز شمال غرب کشور پرداخته شد. بدین منظور، با مدنظر قراردادن اطلاعات اندازهگیری چهارساله (1387ـ1387 تا 1390ـ1391) سه استان آذربایجان شرقی، آذربایجان غربی، و اردبیل توانایی روش شبکه عصبی- موجک و زمینآمار ارزیابی شد. مقایسه روشهای مختلف زمینآمار نشان از برتری روش کریجینگ معمولی با نیمتغییرنمای گوسین برای مؤلفههای چگالی برف، آب معادل برف، و ارتفاع برف با آماره میانگین مجذور مربعات خطای استاندارد (NRMSE) بهترتیب 259/0، 429/0، و 390/0 بود. با کاربرد روش شبکه عصبی- موجک خطای برآورد هر سه مؤلفه بسیار کاهش یافت؛ بهطوریکه مقدار NRMSE برای مؤلفههای چگالی برف، آب معادل برف، و ارتفاع برف بهترتیب 122/0، 002/0، و 001/0 بهدست آمد. ضمن آنکه دقت شبیهسازی نقاط حدی مؤلفههای برف به وسیله روش شبکه عصبی- موجک افزایش یافت. بنابراین، کاربرد شبکه عصبی- موجک در مقایسه با زمینآمار در برآورد توزیع مکانی مشخصههای برف توصیه میشود.
کلیدواژههای فارسی مقاله
آب معادل برف، چگالی برف، زمینآمار، ضخامت برف، عصبی- موجک،
عنوان انگلیسی
Snow Characterizes Mapping of North-West Basins
چکیده انگلیسی مقاله
Introduction Snow is an important hydrological phenomenon and snow water equivalent is suitable water resource in many parts of the world. Snow and snow water equivalent have a significant contribution in streamflow and groundwater recharge. For this reason, it is important modeling of snow accumulation and melting. So, estimation of snow spatial distribution in different time scales is one of key stages in water resources studies. Due to the successful application of geostatistical methods in different sciences, the purpose of this study is mapping of snow characteristics. In this study, the spatial analysis of snow water equivalent, snow depth and snow density, which is one of major components of the water balance, is evaluated in watershed of the country north-west. Materials and methods In this study, using geostatistical methods, spatial distribution of snow height, snow density and snow water equivalent were estimated. So, by measurement data of three Azabbayjan- Sharghi, Azarbayjan- Gharbi and Ardebi provinces during four years (2008-2012) in north-west, capability of Kriging, radial basis function and inverse distance weight method were evaluated. The Figure 1 shows location of study area and used data. For estimation of snow characterizes in non-measurement estimated points was used evaluation, longitude and latitude parameters. The results comparison of each geostatistical methods was done by the Normal Root Mean Square Error (NRMSE) criterion. (1) where Xi , Yi: ith estimated snow data , n: number examples. The drawing of zoning maps was done by ArcGIS software. Results and discussion The before zoning, correlation coefficient value of snow density, snow height and snow water equivalent as depended with geographic characterizes was obtain in SPSS software (Table 1). Table 1. the correlation coefficient matrix of used variables Longitude Latitude Elevation Snow density Snow water equivalent Snow height Longitude 1 Latitude -0.456** 1 Elevation 0.276* 0.105 1 Snow density 0.167 -0.053 0.221 1 Snow water equivalent 0.270* -0.107 0.489** 0.410** 1 Snow height 0.218 -0.103 0.500** 0.035 0.893** 1 In addition to Table 2, elevation and longitude with correlation coefficient of 0.489 and 0.270, respectively, have the most effect on snow water equivalent. the positive sign indicates straight relative between elevation and longitude with snow water equivalent. As a general result, each three snow characterizes have positive relative with elevation. it is because of elevation is an important topography factor and increased height leads decreased air temperature and enhancement snow. The results indicated that in 100% cases, the ordinary kriging method with Gaussian semi variogram had the best results than all methods. the results of inverse distance weight method showed that this method had the least accurate in zoning. Even, power increased don't lead than accurate enhancement. Nikbakht and Delbari (2013) applied different interpolation methods for estimated ground water table in Zahedan plain. in this study reported preference of kriging method with Gaussian semi variogram. McKenna (2000) reported that kriging geostatistical method is suitable, also can be used low number data. The results indicated that mean accurate of kriging method with Guassian semi variogram for snow density, snow water equivalent during four years on base Normal Root Mean Square Error (NRMSE) were 6.76, 3.18 and 10.57, respectively. the results of mapping showed that the most zones of snow characterizes were located in two middle classis and minimum and maximum zones were as small spots. Conclusion The purpose of this research was to develop interpolation methods to assess the estimation snow components in the non-measurement points. In addition to equipment and preparation problems of snow stations, it is necessary to use modern methods to inform from the snow spatial distribution. The results of this study showed that in the study area and in four years time, ordinary kriging gave better results than other methods. the different interpolation methods had different accurate and can not extend results of an area easily to other areas. But the advantage of this research was in using four years data to an area with 100,861 km2 zone and for three snow important features. Other features of the study was in using longitude, latitude and elevation in non-measured points. Since the used independent variables located in readily available variables categories (access quick to the data at a lower cost and higher accuracy), so we can expect good results with high accurate. Keywords: ArcGIS, Geostatistical, Snow water equivalent, Snow density, Snow depth
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
مریم بیات ورکشی |
استادیار مهندسی منابع آب، دانشکدة کشاورزی، دانشگاه ملایر، ملایر، ایران
علیرضا ایلدرومی |
دانشیار گروه مهندسی آبخیزداری دانشکدة محیط زیست و منابع طبیعی دانشگاه ملایر، ایران
حمید نوری |
استادیار آب و هواشناسی، دانشکدة منابع طبیعی، دانشگاه ملایر، ایران
حمید زارع ابیانه |
دانشیار گروه مهندسی آب، دانشکدة کشاورزی، دانشگاه بوعلی سینا، همدان، ایران
نشانی اینترنتی
https://jphgr.ut.ac.ir/article_65426_33fff8b486790971139bff8a423c6189.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/1375/article-1375-578859.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات