این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 9 آذر 1404
ژئوفیزیک ایران
، جلد ۸، شماره ۴، صفحات ۰-۰
عنوان فارسی
ارزیابی دقت روشهای فشرده ترکیبی و اَبَرفشرده مرتبه ششم در شبکههای C-Dو LE: نمایش امواج گرانی- لختی و راسبی خطی
چکیده فارسی مقاله
در مدلهای جوّی و اقیانوسی، انواع گوناگونی از شبکههای عددی بهکار گرفته میشود. از جمله، شبکه آراکاوا Cکه برای فواصل شبکهای کوچکتر از شعاع دگرشکلی راسبی، رفتار بهتری دارد و نسبت به سایر شبکهها متداولتر است؛ اما در فواصل شبکهای بزرگتر رفتار خوبی ندارد. این مسئله از میانگینگیری سرعت در محاسبه جملههای کوریولیس ناشی میشود. یکی از راهکارها استفاده از شبکه C-Dاست که شکل عمومی رابطه پاشندگی گسسته آن برای امواج گرانی- لختی معادل با شبکه LEاست. در بیشتر این تحقیقات، از روشهایی با دقت مرتبه بالا استفاده نشده است. در این مقاله، پس از معرفی شکل عمومی روابط پاشندگی گسسته تکلایهای و دولایهای امواج گرانی- لختی و امواج راسبی در شبکههای C-Dو LE، دقت روشهای اَبَرفشرده و فشرده ترکیبی مرتبه ششم درحکم دو روش مرتبه بالا، در محاسبه بسامد و سرعت گروه این امواج مورد ارزیابی قرار میگیرد و با نتایج مشابه در شبکههای آراکاوا Cو Dو شبکه Z، مقایسه میشود. نتایج حاکی از آن است که برای مسئله امواج گرانی- لختی، در شبکههای C-Dو LE(نیز همانند شبکه Z) روش فشرده ترکیبی مرتبه ششم نسبت به روش اَبَرفشرده هممرتبه، برتری دارد. این برتری در محاسبه بسامد امواج راسبی نیز مشاهده میشود ولی در محاسبه سرعت گروه این امواج، عملکرد روش اَبَرفشرده کمی بهتر از روش فشرده ترکیبی است. بهطورکلی، اگر چه شبکه C-Dاز ترکیب شبکههای آراکاوا Cو Dتشکیل شده است ولی هم برای امواج گرانی- لختی و هم برای امواج راسبی، رفتار نامطلوب این شبکهها در شبکه C-Dمشاهده نمیشود. رفتار شبکه C-Dدر مسئله امواج گرانی- لختی نزدیک به شبکه Zاست و حتی در روش فشرده ترکیبی مرتبه ششم، کمی بهتر از شبکه Zنیز هست.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Accuracy assessment of sixth order combined compact and super compact methods on C-D and LE grids: Representation of linear inertia-gravity and Rossby waves
چکیده انگلیسی مقاله
The oceanic and atmospheric models have been developed on different numerical grids. The Arakawa's C grid is well-known because of the advantages of the C-grid discretization at high resolutions. The C grid, however, is well suited for reproducing high frequency inertia-gravity waves in resolved cases, but there are difficulties in dealing with the Coriolis terms and low-frequency processes. In particular, the C-grid approach is unfavorable in the under-resolved cases with grid-scale noise. Several fixes have been proposed for the C-grid problem. One such method is the C-D grid approach which improves spectral properties of the inertia-gravity waves at low resolutions. The C-D grid approach employs a combination of the C and D grids such that all terms are the same as in a conventional C-grid discretization except for the Coriolis terms where the D-grid velocities are used so that they require no interpolation. Another grid is the LE grid that comprises the same structure of Arakawaâs E grid with a different grid space. Most of these studies apply the traditional second-order finite difference method to spatial differencing on the C-D grid, but the application to higher accurate finite difference methods is lacking. Finite difference methods are commonly used to simulate the dynamical behavior of geophysical fluids. Numerical simulations of the complicated flows such as vortices, turbulent currents and instabilities need high accuracy methods as well as high resolutions. The compact finite difference methods are powerful ways to reach the objectives of high accuracy and low computational cost. The super compact and combined compact finite difference methods can be considered as promising methods for large scale computations in atmosphereâocean dynamics with high accuracy. In this study, we derived the general discrete dispersion relations of inertia-gravity and Rossby waves on the C-D and LE grids. The linearized single-layer and two-layer shallow-water models were used to describe these kinds of waves which play an important role in the setup of the ocean circulation. These relations were used to assess the performances of the sixth-order super compact finite difference (SCD6) and sixth-order combined compact finite difference (CCD6) schemes on the C-D and LE grids. The results on these grids were compared to Randallâs Z grid and Arakawaâs C and D grids. The general discrete dispersion relations of inertia-gravity waves on the C-D grid were similar to the LE grid at both single layer and two-layer models, but they were different for Rossby waves. The results of the present work revealed that the CCD6 scheme exhibits a substantial improvement over the SCD6 scheme for the frequency and group velocity of inertiaâgravity waves on the C-D and LE grids. In the same manner, for the frequency of Rossby waves, the performance of the CCD6 scheme is better than that of SCD6 scheme, but for the group velocity of Rossby waves, the SCD6 scheme is slightly more accurate than CCD6 scheme. In general, the C-D grid is, however, composed of Arakawaâs C and D grids which are susceptible to grid scale noise but its behavior is favorable for both inertia-gravity and Rossby waves. In addition, for inertia-gravity waves, it could be observed that the accuracy of the SCD6 scheme on the C-D grid is similar to the Z grid and even the CCD6 scheme exhibits higher accuracy on the C-D grid.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
حکیم گلشاهی |
امیر علوی |
نشانی اینترنتی
http://www.ijgeophysics.ir/article_33565_d6ff74181ea79ac2d97d7984d859bef1.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/1514/article-1514-462220.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات