|
پژوهش های آبخیزداری، جلد ۲۹، شماره ۱، صفحات ۱-۰
|
|
|
عنوان فارسی |
مقایسه مدلهای شبکههای عصبی مصنوعی و رگرسیون آماری برای پیشبینی هدایت هیدرولیکی اشباع خاک |
|
چکیده فارسی مقاله |
هدایت هیدرولیکی اشباع خاک (Ks) از جمله مهمترین خصوصیات فیزیکی و هیدرولیکی مورد نیاز در مدلسازیهای آب-خاک است. بهعلت وقتگیر و پرهزینه بودن ذاتی اندازهگیری Ks، برآورد آن از خصوصیات فیزیکی و شیمیایی اولیه، ارزان و سهللالوصول اندازهگیریشده خاک اهمیت بسیار زیادی دارد. در دو دهه اخیر، گسترش روشهای برآورد تحت عنوان توابع انتقالی، که از متغیرهای کمکی سهللالوصول بهره میگیرند، نقطه عطفی در مطالعات خاک بوده است. تحقیق حاضر جهت (1) بسط و توسعه توابع انتقالی مختلف و (2) ارزیابی و مقایسه مدلهای توابع انتقالی براساس رگرسیون آماری و شبکه عصبی مصنوعی در برآورد Ks در زیرحوزه رودخانه زایندهرود واقع در استان چهارمحال و بختیاری انجام شد. کل دادهها به دو زیرمجموعه، شامل دادههای مدلسازی (86=n) و ارزیابی (25=n) تقسیم شدند. ریشه میانگین مربعات خطا (RMSE)، میانگین خطا (ME) و درصد بهبود نسبی (RI) به عنوان شاخصهای ارزیابی مورد استفاده قرار گرفتند. مدلهای توابع انتقالی براساس شبکه عصبی مصنوعی تخمین قابل اطمینانتری نسبت به توابع انتقالی براساس رگرسیون آماری ارائه دادند. |
|
کلیدواژههای فارسی مقاله |
توابع انتقالی، شاخصهای ارزیابی، متغیرهای کمکی، |
|
عنوان انگلیسی |
Comparison of artificial neural network and regression pedotransfer functions for prediction of soil saturated hydraulic conductivity |
|
چکیده انگلیسی مقاله |
Soil saturated hydraulic conductivity (Ks) is among the most important soil hydraulic-physical properties that required for soil-water modeling. Due to high cost and time- consuming nature of Ks measurement, estimating Ks from basic, inexpensive and easily measured physical and chemical soil properties is becoming increasingly important. In the last two decades, the development of estimation methods called pedotransfer functions that use cheap auxiliary variables has been a sharpening focus of soil research. This study was conducted (i) to develop different pedotransfer functions and (ii) to evaluate and compare statistical regression and neural network based pedotransfer functions for estimating Ks in a sub- catchment of Zayanderood River, located in Chaharmahal-va-Backtiari province. The data set was divided in to subsets for modeling (n=86) and validation (n=25). Root-mean-square error (RMSE), mean error (ME) and percentage of relative improvement (RI) were used as the validation indices. The artificial neural network-based models provided more reliable estimation than the statistical regression-based pedotransfer functions. |
|
کلیدواژههای انگلیسی مقاله |
|
|
نویسندگان مقاله |
|
|
نشانی اینترنتی |
|
فایل مقاله |
فایلی برای مقاله ذخیره نشده است |
کد مقاله (doi) |
|
زبان مقاله منتشر شده |
fa |
موضوعات مقاله منتشر شده |
|
نوع مقاله منتشر شده |
|
|
|
برگشت به:
صفحه اول پایگاه |
نسخه مرتبط |
نشریه مرتبط |
فهرست نشریات
|