این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 30 شهریور 1404
Journal of Arthropod-Borne Diseases
، جلد ۱۰، شماره ۲، صفحات ۲۲۲-۲۳۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Time Series Analysis of Meteorological Factors Influencing Malaria in South Eastern Iran
چکیده انگلیسی مقاله
Background: The Malaria Early Warning System is defined as the use of prognostic variables for predicting the occurrence of malaria epidemics several months in advance. The principal objective of this study was to provide a malaria prediction model by using meteorological variables and historical malaria morbidity data for malaria-endemic areas in south eastern Iran. Methods: A total of 2002 locally transmitted microscopically confirmed malaria cases, which occurred in the Minab district of Hormozgan Province in Iran over a period of 6 years from March 2003 to March 2009, were analysed. Meteorological variables (the rainfall, temperature, and relative humidity in this district) were also assessed. Monthly and weekly autocorrelation functions, partial autocorrelation functions, and cross-correlation graphs were examined to explore the relationship between the historical morbidity data and meteorological variables and the number of cases of malaria. Having used univariate auto-regressive integrated moving average or transfer function models, significant predictors among the meteorological variables were selected to predict the number of monthly and weekly malaria cases. Ljung-Box statistics and stationary R-squared were used for model diagnosis and model fit, respectively. Results: The weekly model had a better fit (R 2 = 0.863) than the monthly model (R 2 = 0.424). However, the Ljung-Box statistic was significant for the weekly model. In addition to autocorrelations, meteorological variables were not significant, except for different orders of maximum and minimum temperatures in the monthly model. Conclusions: Time-series models can be used to predict malaria incidence with acceptable accuracy in a malaria early-warning system. The applicability of using routine meteorological data in statistical models is seriously limited.
کلیدواژههای انگلیسی مقاله
Malaria,Models,Statistical,Time-Series,Iran
نویسندگان مقاله
افشین استوار | afshin ostovar
epidemiology and biostatistics department, school of public health, tehran university of medical sciences, tehran, iran
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی تهران (Tehran university of medical sciences)
علی اکبر حقدوست | ali akbar haghdoost
research center for modeling in health, institute for future studies in health, kerman university of medical sciences, kerman, iran
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی کرمان (Kerman university of medical sciences)
عباس رحیمی فروشانی | abbas rahimiforoushani
epidemiology and biostatistics department, school of public health, tehran university of medical sciences, tehran, iran
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی تهران (Tehran university of medical sciences)
احمد رییسی | ahmad raeisi
malaria control office of moh and me, tehran university of medical sciences, tehran, iran
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی تهران (Tehran university of medical sciences)
رضا مجدزاده | reza majdzadeh
knowledge utilization research center, tehran university of medical sciences, tehran, iran
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی تهران (Tehran university of medical sciences)
نشانی اینترنتی
http://jad.tums.ac.ir/index.php/jad/article/view/153
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Article
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات