Avicenna Journal of Medical Biotechnology، جلد ۸، شماره ۱، صفحات ۳۶-۴۱

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Computational Detection of piRNA in Human Using Support Vector Machine
چکیده انگلیسی مقاله Background: Piwi-interacting RNAs (piRNAs) are small non-coding RNAs (ncRNAs), with a length of about 24-32 nucleotides, which have been discovered recently. These ncRNAs play an important role in germline development, transposon silencing, epigenetic regulation, protecting the genome from invasive transposable elements, and the pathophysiology of diseases such as cancer. piRNA identification is challenging due to the lack of conserved piRNA sequences and structural elements. Methods: To detect piRNAs, an appropriate feature set, including 8 diverse feature groups to encode each RNA was applied. In addition, a Support Vector Machine (SVM) classifier was used with optimized parameters for RNA classification. According to the obtained results, the classification performance using the optimized feature subsets was much higher than the one in previously published studies. Results: Our results revealed 98% accuracy, Mathew’ correlation coefficient of 98% and 99% specificity in discriminating piRNAs from the other RNAs. Also, the obtained results show that the proposed method outperforms its competitors. Conclusion: In this paper, a prediction method was proposed to identify piRNA in human. Also, 48 heterogeneous features (sequence and structural features) were used to encode RNAs. To assess the performance of the method, a benchmark dataset containing 515 piRNAs and 1206 types of other RNAs was constructed. Our method reached the accuracy of 99% on the benchmark dataset. Also, our analysis revealed that the structural features are the most contributing features in piRNA prediction.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله

نشانی اینترنتی http://www.ajmb.org/En/Article.aspx?id=231
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/133/article-133-376060.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات