این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 24 مهر 1404
Journal of Medical Signals and Sensors
، جلد ۱۴، شماره ۱۲، صفحات ۱۰-۴۱۰۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Radiomics based Machine Learning Models for Classification of Prostate Cancer Grade Groups from Multi Parametric MRI Images
چکیده انگلیسی مقاله
Abstract Purpose: This study aimed to investigate the performance of multiparametric magnetic resonance imaging (mpMRI) radiomic feature-based machine learning (ML) models in classifying the Gleason grade group (GG) of prostate cancer. Methods: In this retrospective study, a total of 203 patients with histopathologically confirmed prostate cancer who underwent mpMRI before prostate biopsy were included. After manual segmentation, radiomic features (RFs) were extracted from T2-weighted, apparent diffusion coefficient, and high b-value diffusion-weighted magnetic resonance imaging (DWMRI). Patients were split into training sets and testing sets according to a ratio of 8:2. A pipeline considering combinations of two feature selection (FS) methods and six ML classifiers was developed and evaluated. The performance of models was assessed using the accuracy, sensitivity, precision, F1-measure, and the area under curve (AUC). Results: On high b-value DWMRI-derived features, a combination of FS method recursive feature elimination (RFE) and classifier random forest achieved the highest performance for classification of prostate cancer into five GGs, with 97.0% accuracy, 98.0% sensitivity, 98.0% precision, and 97.0% F1-measure. The method also achieved an average AUC for GG of 98%. Conclusion: Preoperative mpMRI radiomic analysis based on ML, as a noninvasive approach, showed good performance for classification of prostate cancer into five GGs. Advances in Knowledge: Herein, radiomic models based on preoperative mpMRI and ML were developed to classify prostate cancer into 5 GGs. Our study provides evidence that analysis of quantitative RFs extracted from high b-value DWMRI images based on a combination of FS method RFE and classifier random forest can be applied for multiclass grading of prostate cancer with an accuracy of 97.0%.
کلیدواژههای انگلیسی مقاله
Gleason grading, machine learning, multiparametric magnetic resonance imaging, prostate cancer, radiomics
نویسندگان مقاله
| Fatemeh Zandie
Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran
| Mohammad Salehi
Department of Radiation Sciences, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| Asghar Maziar
Department of Radiotherapy and Medical Physics, Faculty of Para Medicine, Arak University of Medical Sciences and Khansari Hospital, Arak, Iran
| Reza Bayatiani
Department of Radiation Sciences, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| Reza Paydar
نشانی اینترنتی
http://jmss.mui.ac.ir/index.php/jmss/article/view/735
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Articles
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات