این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Medical Signals and Sensors، جلد ۱۵، شماره ۴، صفحات ۱۰-۴۱۰۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Multi-classification Deep Learning Approach for Diagnosing Stroke Type and Severity Using Multimodal Magnetic Resonance Images
چکیده انگلیسی مقاله Abstract Background:  Clinical decisions for stroke treatments, such as thrombolytic drugs for ischemic strokes or anticoagulants for hemorrhagic strokes, rely on accurate diagnosis and severity assessment. Our study uses diffusion-weighted magnetic resonance imaging and Convolutional Neural Networks (CNNs) to differentiate healthy and stroke samples, classify stroke types, and predict severity, aiding in decision-making for stroke management. Methods:  We evaluated 143 patients: 85 with ischemic stroke and 58 with hemorrhagic stroke. For stroke diagnosis, we compared multimodal (apparent diffusion coefficient and diffusion-weighted imaging [DWI]) and single-modal (using separate images) preprocessing techniques. Our study introduced two models, Added CNN Layer-ResNet-50 (ACL-ResNet-50) and Added CNN Layer-MobileNetV1 (ACL-MobileNetV1), based on transfer learning (MobileNetV1 and ResNet-50), enhancing performance through reinforced layers. We compared our proposed models with a scenario in which only the final layer was replaced in ResNet-50 and MobileNetV1. Furthermore, we predicted National Institutes of Health Stroke Scale (NIHSS) scores in three ranges based on DWI images to gauge stroke severity. Evaluation criteria for the models included accuracy, sensitivity, specificity, and area under the curve (AUC). Results:  In stroke classification (normal, ischemic, and hemorrhagic), ACL-MobileNetV1 outperformed other models, achieving 98% accuracy, 99% sensitivity, 98% specificity, and 99% AUC. For assessing ischemic stroke severity using NIHSS ranges, ACL-ResNet-50 showed the optimal performance with an accuracy of 0.92, sensitivity of 0.84, specificity of 0.92, and AUC of 0.95. Conclusion:  Our study’s proposed method effectively classified stroke type and severity based on multimodal MR images, potentially as a practical decision support tool for stroke treatments.
کلیدواژه‌های انگلیسی مقاله Apparent diffusion coefficient,diffusion-weighted imaging,magnetic resonance imaging,National Institutes of Health Stroke Scale,stroke

نویسندگان مقاله | Sahar Felehgari
1.Neuroscience Research Center, Health Policy and Promotion Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran 2.Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran


| Payam Sariaslani
Department of Information Engineering, Faculty of Computer Engineering, University of Padova, Padova, Italy


| Sepideh Shamsizadeh
Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran


| Saba Felehgari
Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran


| Anahita Rajabi
1.Neuroscience Research Center, Health Policy and Promotion Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran 2.Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran


| Hiwa Mohammadi



نشانی اینترنتی http://jmss.mui.ac.ir/index.php/jmss/article/view/747
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده Original Articles
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات