این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 25 مهر 1404
Journal of Medical Signals and Sensors
، جلد ۱۵، شماره ۶، صفحات ۱۰-۴۱۰۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Introducing a Deep Neural Network Model with Practical Implementation for Polyp Detection in Colonoscopy Videos
چکیده انگلیسی مقاله
Abstract Background: Deep learning has gained much attention in computer-assisted minimally invasive surgery in recent years. The application of deep-learning algorithms in colonoscopy can be divided into four main categories: surgical image analysis, surgical operations analysis, evaluation of surgical skills, and surgical automation. Analysis of surgical images by deep learning can be one of the main solutions for early detection of gastrointestinal lesions and for taking appropriate actions to treat cancer. Method: This study investigates a simple and accurate deep-learning model for polyp detection. We address the challenge of limited labeled data through transfer learning and employ multi-task learning to achieve both polyp classification and bounding box detection tasks. Considering the appropriate weight for each task in the total cost function is crucial in achieving the best results. Due to the lack of datasets with nonpolyp images, data collection was carried out. The proposed deep neural network structure was implemented on KVASIR-SEG and CVC-CLINIC datasets as polyp images in addition to the nonpolyp images extracted from the LDPolyp videos dataset. Results: The proposed model demonstrated high accuracy, achieving 100% in polyp/non-polyp classification and 86% in bounding box detection. It also showed fast processing times (0.01 seconds), making it suitable for real-time clinical applications. Conclusion: The developed deep-learning model offers an efficient, accurate, and cost-effective solution for real-time polyp detection in colonoscopy. Its performance on benchmark datasets confirms its potential for clinical deployment, aiding in early cancer diagnosis and treatment.
کلیدواژههای انگلیسی مقاله
Automatic polyp detection,deep learning,image processing,transfer learning
نویسندگان مقاله
| Hajar Keshavarz
Department of Biomedical Engineering, Engineering Faculty, Meybod University, Meybod, Yazd, Iran
| Zohreh Ansari
Department of Artificial Intelligence in Medical Sciences, Smart University of Medical Sciences, Tehran, Iran
| Hossein Abootalebian
Department of Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| Babak Sabet
Department of Artificial Intelligence in Medical Sciences, Smart University of Medical Sciences, Tehran, Iran
| Mohammadreza Momenzadeh
نشانی اینترنتی
http://jmss.mui.ac.ir/index.php/jmss/article/view/753
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Articles
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات