این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 3 مهر 1404
Journal of Computational and Applied Research in Mechanical Engineering - JCARME
، جلد ۱۴، شماره ۲، صفحات ۲۵۳-۲۷۲
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Investigating the performance of tubular direct ammonia IT-SOFC with temkin- pyzhev kinetic model using machine learning and CFD
چکیده انگلیسی مقاله
Researchers encounter difficulties in producing clean energy and addressing environmental issues. Solid oxide fuel cells (SOFCs) present a promising prospect to the growing demand for clean and efficient electricity due to their capacity to convert chemically stored energy into electrical energy directly. In enhancing this technology, ammonia is employed as a cost-effective and carbon-free fuel with convenient transport capabilities. Efficiently predicting the performance of a system in relation to its operating environment has the potential to expedite the identification of the optimal operating conditions across a broad spectrum of parameters. For this purpose, the performance of intermediate temperature solid oxide fuel cell (IT-SOFC) with inlet ammonia fuel is predicted utilizing machine learning, which is efficient in time and cost. Initially, the system is simulated with computational fluid dynamics finite element code to generate data for training machine learning algorithms (DNN, RFM and LASSO regression), followed by an evaluation of the predictive accuracy of these algorithms. The analysis demonstrates that the three examined algorithms exhibit sufficient accuracy in predicting the performance of the introduced solid oxide fuel cell (SOFC) system, all surpassing a 95 percent threshold. The RFM and DNN exhibit the most accurate predictions for the maximum temperature and power density of fuel cells, respectively.
کلیدواژههای انگلیسی مقاله
Solid oxide fuel cell,CFD,Machine Learning,Ammonia,Temkin-phyzhev
نویسندگان مقاله
Mahdi Keyhanpour |
Department of Mechanical Engineering, Khaje Nasir Toosi University of Technology, Tehran, Tehran, 1999143344, Iran
Majid Ghassemi |
Department of Mechanical Engineering, Khaje Nasir Toosi University of Technology, Tehran, Tehran, 1999143344, Iran
نشانی اینترنتی
https://jcarme.sru.ac.ir/article_2290_3310f62c5ad185a7c8f217c89fe34cef.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات