این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 5 آذر 1404
Journal of Agricultural Science and Technology
، جلد ۱۷، شماره ۷، صفحات ۱۷۰۷-۱۷۲۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Modeling of Solar Radiation Potential in Iran Using Artificial Neural Networks
چکیده انگلیسی مقاله
Solar radiation data play an important role in solar energy relevant researches. These data are not available for some locations due to the absence of the meteorological stations. Therefore, solar radiation data have to be predicted by using solar radiation estimation models. This study presents an integrated Artificial Neural Network (ANN) approach for estimating solar radiation potential over Iran based on geographical and meteorological data. For this aim, the measured data of 31 stations spread over Iran were used to train Multi-Layer Perceptron (MLP) neural networks with different input variables, and solar radiation was the output. The accuracy of the models was evaluated using the statistical indicators of Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and Correlation Coefficient (R); hence, the best model in each category was identified. The Stepwise Multi NonLinear Regression (MNLR) method was used to determine the most suitable input variables. The results obtained from the ANN models were compared with the measured data. The
MAPE
and
RMSE
were found to be 2.98% and 0.0224, respectively. The obtained R value was about 99.85% for the testing data set. The results testify to the generalization capability of the ANN model and its excellent ability to predict solar radiation in Iran.
کلیدواژههای انگلیسی مقاله
ANN,Meteorological data,Multi non-linear regression,Solar radiation
نویسندگان مقاله
T. Tavakkoli Hashjin |
Department of Biosystems Engineering, Faculty of Agriculture, Tarbiat Modares University (T.M.U.), Tehran, Iran. P.O. Box 14115-111.
B. Ghobadian |
Department of Biosystems Engineering, Faculty of Agriculture, Tarbiat Modares University (T.M.U.), Tehran, Iran. P.O. Box 14115-111.
Sh. Gorjian |
Department of Biosystems Engineering, Faculty of Agriculture, Tarbiat Modares University (T.M.U.), Tehran, Iran. P.O. Box 14115-111.
نشانی اینترنتی
https://jast.modares.ac.ir/article_15812_d507145af417c9eb6b2b317f54972192.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات