این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 21 آبان 1404
پژوهشهای آسیب شناسی زیستی
، جلد ۲۶، شماره ۴، صفحات ۷-۱۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Classifying Breast Tumors as Malignant or Benign Using Digitized Images of Fine Needle Aspiration Samples of Breast Mass Tissue: An Application of Classification Tree Algorithms
چکیده انگلیسی مقاله
Introduction:
Breast cancer represents a major public health issue worldwide, highlighting the critical role of early detection in facilitating effective treatment. Fine needle aspiration (FNA) serves as a minimally invasive method for obtaining cellular material from breast masses for subsequent analysis. Nonetheless, pathologists' assessment of FNA samples may be characterized by subjectivity and protracted evaluation times, leading to variability in diagnostic results. Integrating machine learning algorithms, including classification tree models, can potentially improve the consistency and precision of breast tumor classification. Using computational capabilities and sophisticated machine learning methodologies, these models can proficiently categorize digitized images of FNA samples as malignant or benign.
Methods:
We used classification tree algorithms such as CART, Ctree, Evtree, QUEST, CRUISE, and GUIDE
to
distinguish
between
malignant
and
benign tumors
in the
Wisconsin Breast Cancer Dataset
(
WBCD
).
The models' performance was evaluated using accuracy metrics, such as sensitivity, specificity, false positive and negative rates, positive and negative predictive values, Youden's Index, accuracy, positive and negative likelihood ratios, diagnostic odds ratios, and AUC (area under the ROC curve).
Results:
T
he results showed that the
CRUISE algorithm showed excellent diagnostic performance
in
distinguishing
between
malignant
and
benign tumors.
Conclusion:
The
results emphasize the critical role of integrating machine learning models into clinical practice to assist pathologists, improve diagnostic outcomes, and reduce subjectivity in cancer classification.
کلیدواژههای انگلیسی مقاله
Breast Cancer,benign tumor,malignant tumor,Prediction,diagnostic scheme,classification trees
نویسندگان مقاله
Mina Jahangiri |
Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
Anooshirvan Kazemnejad |
Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
نشانی اینترنتی
https://mjms.modares.ac.ir/article_19488_cd6f4ba0a2910216dac1adc673cfd19e.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات