International Journal of Information and Communication Technology Research (IJICT، جلد ۱۷، شماره ۲، صفحات ۰-۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Hyper-parameter Optimization of LSTM Network Models through Genetic Algorithm and Q-Learning Algorithm for creating a new fake news Analysis and Classification of a COVID-19 Dataset
چکیده انگلیسی مقاله Currently, the development of the coronavirus as a pandemic and its global spread are a major concern for our society and the international community. In recent years, however, a growing number of people have transferred their primary source of news and information to social networks. So, the broad transmission of inaccurate and misleading information on social media is significant for the majority of politicians. Not only are we fighting against COVID-19, but also a "infodemic." To address this, on COVID-19, we have collected and released a labeled dataset of 7,000 Persian social media postings of true and fake news. Several languages, including Arabic, English, Chinese, and Hindi, have recognized Covid 19 fake news. This study utilizes a deep neural network approach to simplify feature extraction, develop a strong ability to learn, and automatically discover features compared to typical machine learning approaches, as well as a novel approach to improving outcome using a deep neural network. The genetic algorithm and reinforcement learning are provided for setting and optimizing the hyper-parameters of the deep learning algorithm, which has led to better outcomes than previous research and achieved an accuracy rate of 0.92 percent
کلیدواژه‌های انگلیسی مقاله COVID-19 pandemic, detecting false news, deep learning, reinforcement learning, genetic algorithm.

نویسندگان مقاله

نشانی اینترنتی http://ijict.itrc.ac.ir/browse.php?a_code=A-10-4486-1&slc_lang=en&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده فناوری اطلاعات
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات