مدیریت فناوری اطلاعات، جلد ۱۵، شماره Special Issue: EIntelligent and Security for Communication, Computing Application (ISCCA-۲۰۲۲)، صفحات ۱-۲۲

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Automated Novel Heterogeneous Meditation Tradition Classification via Optimized Chi-Squared 1DCNN Method
چکیده انگلیسی مقاله The realm of human-computer interaction delves deep into understanding how individuals acquire knowledge and integrate technology into their everyday lives. Among the various methods for measuring brain signals, electroencephalography (EEG) stands out for its non-invasive, portable, affordable, and highly time-sensitive capabilities. Some researchers have revealed a consistent correlation between meditation practices and changes in the EEG frequency range, observed across a wide array of meditation techniques. Furthermore, the availability of EEG datasets has facilitated research in this field. This study explores the effectiveness of the One-Dimensional Convolutional Neural Network (CNN-1D) based novel classification method, which impressively achieved an 62% training accuracy, showcasing the robustness of these models in meditation classification tasks. The proposed methodology unveiling a novel method to differentiate neural oscillations in 4 types of meditators and control. This approach analyzes an EEG dataset of highly experienced meditators practicing Vipassana (VIP), Isha Shoonya (SYN), Himalayan Yoga (HYT), and untrained control subjects (CTR) by employing chi-square, CNN, hyperparameter models for data analysis, The outcomes indicate that different meditation types exhibit distinct cognitive features, enabling effective differentiation and classification.
کلیدواژه‌های انگلیسی مقاله EEG, 1DCNN, Meditation Tradition, Chi-Square dimension reduction

نویسندگان مقاله Abhishek Jain |
Department of Information Technology, Guru Ghasidas University (A Central University), Bilaspur (CG India).

Rohit Raja |
Department of Information Technology, Guru Ghasidas University (A Central University), Bilaspur (CG India).


نشانی اینترنتی https://jitm.ut.ac.ir/article_95223_5ac294aff3b5bcb3d79858e73536fc1a.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات