|
Iranian Journal of Numerical Analysis and Optimization، جلد ۱۵، شماره Issue ۲، صفحات ۶۰۰-۶۲۴
|
|
|
عنوان فارسی |
|
|
چکیده فارسی مقاله |
|
|
کلیدواژههای فارسی مقاله |
|
|
عنوان انگلیسی |
Multi-objective portfolio optimization using real coded genetic algorithm based support vector machines |
|
چکیده انگلیسی مقاله |
Investors need to grasp how liquidity affects both risk and return in order to optimize their portfolio performance. There are three classes of stocks that accommodate those criteria: Liquid, high-yield, and less-risky. Classifying stocks help investors build portfolios that align with their risk profiles and investment goals, in which the model was constructed using the one-versus-one support vector machines method with a radial basis function kernel. This model was trained using a combination of the Kompas100 index and the Indonesian industrial sectors stocks data. Single optimal portfolios were created using the real coded genetic algorithm based on different sets of objectives: Maximizing short-term and long-term returns, maximizing liquidity, and minimizing risk. In conclusion, portfolios with a balance on all these four investment objectives yielded better results compared to those focused on partial objectives. Furthermore, our proposed method for selecting portfolios of top-performing stocks across all criteria outperformed the approach of choosing top stocks based on a single criterion. |
|
کلیدواژههای انگلیسی مقاله |
Genetic algorithm,Liquidity,Multi-Objective Optimization,One-versus-one support vector machines,Radial basis functions |
|
نویسندگان مقاله |
B. Surja | Center for Mathematics and Society, Department of Mathematics, Faculty of Science, Parahyangan Catholic University, Bandung, Indonesia.
L. Chin | Center for Mathematics and Society, Department of Mathematics, Faculty of Science,
Parahyangan Catholic University, Bandung, Indonesia.
F. Kusnadi | Center for Mathematics and Society, Department of Mathematics, Faculty of Science,
Parahyangan Catholic University, Bandung, Indonesia.
|
|
نشانی اینترنتی |
https://ijnao.um.ac.ir/article_46386_f4520351f87da448b113e86daa535120.pdf |
فایل مقاله |
فایلی برای مقاله ذخیره نشده است |
کد مقاله (doi) |
|
زبان مقاله منتشر شده |
en |
موضوعات مقاله منتشر شده |
|
نوع مقاله منتشر شده |
|
|
|
برگشت به:
صفحه اول پایگاه |
نسخه مرتبط |
نشریه مرتبط |
فهرست نشریات
|