Iranian Journal of Numerical Analysis and Optimization، جلد ۱۵، شماره Issue ۲، صفحات ۵۰۸-۵۳۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Exploring hyperchaotic synchronization of a fractional-order system without equilibrium points: A sliding mode control approach
چکیده انگلیسی مقاله Recently, constructing hidden attractors of chaotic systems without equi-librium point has become a key discussion point in the application fields of chaos and hyperchaos science. This paper introduces a novel hyperchaotic system without equilibrium points, distinct from existing systems that rely on the Shilnikov criterion for demonstrating hyperchaos. This study inves-tigates the qualitative properties of the system, including its hyperchaotic attractors, Poincare map, Lyapunov exponents, and Kaplan-Yorke dimen-sion. To enhance the practical applicability of this system, an integral sliding mode control method for synchronization is proposed. Lyapunov theory ensures the stability and effectiveness of the synchronization scheme.The efficiency of the approach is demonstrated by numerical simulations, which validate the potential of the system for various applications.
کلیدواژه‌های انگلیسی مقاله fractional derivative,Synchronization,Lyapunov stability theory,Lyapunov exponents,Sliding mode control

نویسندگان مقاله R.A. Meskine |
Laboratory of mathematics and their interactions, Department of Mathematics, Institute of Mathematics and Computer Science, Abdelhafid Boussouf University Center, Mila, Algeria.

S. Kaouache |
Laboratory of mathematics and their interactions, Department of Mathematics, Institute of Mathematics and Computer Science, Abdelhafid Boussouf University Center, Mila, Algeria.


نشانی اینترنتی https://ijnao.um.ac.ir/article_46252_d2077eccd4f5f91011d03f900862a289.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات