|
International Journal of Nonlinear Analysis and Applications، جلد ۱۶، شماره ۸، صفحات ۱۰۳-۱۱۹
|
|
|
عنوان فارسی |
|
|
چکیده فارسی مقاله |
|
|
کلیدواژههای فارسی مقاله |
|
|
عنوان انگلیسی |
Generalizations of the Hilbert-Weierstrass theorem and Tonelli-Morrey theorem: The regularity of solutions of differential equations and optimal control problems |
|
چکیده انگلیسی مقاله |
One of the basic problems in the “Calculus of Variations” is the minimization of the following functional: $$F(x)=int_a^b f(t,x(t),x'(t)) dt,$$ over a class of functions $x$ defined on the interval $[a,b]$. According to a regularity theorem, solutions to this fundamental problem are found in a smaller class of more regular functions. However, they were originally considered to belong to a larger class. In this context, two theorems attributed to “Hilbert-Weierstrass” and “Tonelli-Morrey” are two classical studies of the regularity of discussion for the solutions to this problem. As higher-order differential equations and higher-order optimal control problems become more prevalent in the literature, regularity issues for these problems should receive more attention. Therefore, a generalization of the above regularity theorems is presented here, namely the regularity of solutions to the following functional $$F(x)=int_a^b f(t,x(t),x'(t),dots,x^{(n-1)}(t)) dt$$ where $n geq 2$. It is expected that this extension will be helpful in discussing the regularity of higher-order differential equations and optimal control problems. |
|
کلیدواژههای انگلیسی مقاله |
Boundary value problems,classical solution,regularity,weak solution |
|
نویسندگان مقاله |
Saman Khoramian | Faculty of Mathematics and Computer, Kharazmi University, Tehran, Iran
|
|
نشانی اینترنتی |
https://ijnaa.semnan.ac.ir/article_9084_d8256250998b3b6f070f55569ca2d0ad.pdf |
فایل مقاله |
فایلی برای مقاله ذخیره نشده است |
کد مقاله (doi) |
|
زبان مقاله منتشر شده |
en |
موضوعات مقاله منتشر شده |
|
نوع مقاله منتشر شده |
|
|
|
برگشت به:
صفحه اول پایگاه |
نسخه مرتبط |
نشریه مرتبط |
فهرست نشریات
|