این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 27 آبان 1404
International Journal of Engineering
، جلد ۳۸، شماره ۱۲، صفحات ۲۸۱۹-۲۸۳۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Enhanced Segmentation of High-Grade and Low-Grade Brain Tumors Using Advanced 3D U-Net++ with Hybrid Lion-Spider Monkey Optimization
چکیده انگلیسی مقاله
Appropriate segmentation of brain tumors from MRI images is crucial for accurate evaluation and treatment management. This paper presents an enhanced approach to segment high- and low-grade gliomas by optimizing the 3D U-Net++ architecture using the Hybrid Lion-Spider Monkey Optimization Algorithm (LSMA). The LSMA integrates the Lion-Spider Monkey Algorithm (LSMA) to improve parameter tuning and feature extraction, significantly enhancing the segmentation process. The study utilizes the BRATS 2020 dataset, which includes T1-weighted, T2-weighted, and FLAIR MRI scans, capturing the distinctive features of the tumors. Preprocessing steps involve estimating image noise tiers and applying the Frost clear out to reduce clutter even as keeping essential details. The modalities are blended into a unified dataset and standardized to make sure regular depth throughout images. Data augmentation strategies, such as rotation and deformation, are employed to increase set of rules resilience. In terms of network structure, the 3-D U-Net++ model features an encoder-decoder shape with dense connections for effective information transmission and characteristic extraction. Deep supervision with auxiliary outputs similarly refines gradient float and improves segmentation accuracy. The model is to start with pretrained on downscaled images to capture large-scale capabilities, accompanied via first-class-tuning on complete-decision pictures for stronger aspect detail. Evaluation on a separate test set demonstrates that the LSMA-optimized 3-D U-Net++ achieves an outstanding accuracy of 99%, surpassing previous methods. This advanced architecture, applied in Python, gives a fairly correct and flexible answer for brain tumor segmentation, offering precious support for clinical practitioners in making informed remedy choices and planning.
کلیدواژههای انگلیسی مقاله
Brain Tumor Segmentation,MRI imaging,3D U-Net++,Medical Image Analysis,Neuro-Oncology
نویسندگان مقاله
R. Sajjanar |
Department of Electronics & Communication Engineering, BLDEA’s V. P. Dr. P. G. Halakatti College of Engineering and Technology, Vijayapura – 586 103(Affiliated to Visvesvaraya Technological University Belagavi-590018), Karnataka, India
U. D. Dixit |
Department of Electronics & Communication Engineering, BLDEA’s V. P. Dr. P. G. Halakatti College of Engineering and Technology, Vijayapura – 586 103(Affiliated to Visvesvaraya Technological University Belagavi-590018), Karnataka, India
نشانی اینترنتی
https://www.ije.ir/article_216533_a070b1f8e47be60716eed7ddeb974f57.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات