International Journal of Engineering، جلد ۳۸، شماره ۱۰، صفحات ۲۲۵۹-۲۲۷۲

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Advanced Multi-Task Learning with Lightweight Networks and Multi-Head Attention for Efficient Facial Attribute Estimation
چکیده انگلیسی مقاله The rapid advancement of computer vision algorithms demands efficient computational resource utilization for practical applications. This study proposes a novel framework that integrates multi-task learning (MTL) with MobileNetV3-Large networks and multi-head attention (MHA) mechanisms to simultaneously estimate facial attributes, including age, gender, race, and emotions. By employing MHA, the model enhances feature extraction and representation by focusing on multiple regions of the input image, thereby reducing computational complexity while significantly improving accuracy. The Receptive Field Enhanced Multi-Task Cascaded (RFEMTC) technique is utilized for effective preprocessing of the input data. Our methodology is rigorously evaluated on the UTKFace, FairFace, and RAF-DB datasets. We introduce a weighted loss function to balance task contributions, enhancing overall performance. Through refinement of the network architecture by analyzing branching points and optimizing the balance between shared and task-specific layers, our experimental results demonstrate significant improvements: a 7% reduction in parameters, a 3% increase in gender detection accuracy, a 5% improvement in race detection accuracy, and a 6% enhancement in emotion detection accuracy compared to single-task methods. Additionally, our proposed architecture reduces age estimation error by approximately one year on the UTKFace dataset and improves age estimation accuracy on the FairFace dataset by 5% compared to state-of-the-art approaches.
کلیدواژه‌های انگلیسی مقاله Facial Attribute Estimation,convolutional neural network,Multi-task Learning,preprocessing,Multi-Head Attention

نویسندگان مقاله M. Rohani |
Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

H. Farsi |
Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

S. Mohamadzadeh |
Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran


نشانی اینترنتی https://www.ije.ir/article_208536_d68e118cbeaa0a93fcd6e14d13c38190.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات