این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 14 مهر 1404
Ecopersia
، جلد ۱۳، شماره ۱، صفحات ۱۳-۳۶
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Enhancing Fire Susceptibility Mapping in Semnan Province: Integrating Machine Learning and Geospatial Analysis
چکیده انگلیسی مقاله
Aims:
This study assesses the impacts of natural and human factors on fire occurrences, identifies key contributors to fire susceptibility maps, and employs machine learning algorithms (MLAs) to enhance the spatiotemporal patterns of fire susceptibility maps.
Materials & Methods:
Data were collected from 110 fire locations and 110 non-fire points spanning from 2001 to 2022 at annual scale. Various auxiliary variables, including
climate
data, terrain features, Normalized Difference Vegetation Index (NDVI), and distance to roads, were analyzed to model fire susceptibility. The study employed multiple MLAs, including Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting Decision Trees (GBDT), to generate the fire susceptibility maps.
Findings:
About 70% of fires occurred within 2 km of roads, indicating significant human influence. Grasslands had the highest fire rates, with over 25% of fires from 2001-2022 due to flammable fuels. The RF and mean models identified 0.4% and 1.31% of the area as very high susceptibility (38,800 km² and 12,600 km²), while the GBDT and SVM models identified 2.42% and 1.86% (234,700 km² and 180,000 km²). The very high susceptibility class, though small in percentage, covers large areas.
Conclusion:
This research highlights
the importance of integrating environmental and human factors for predicting fire events
in arid regions and
developing comprehensive fire susceptibility maps, critical for protecting vulnerable ecosystems.
These outcomes provide valuable tools for fire management and mitigation strategies within vulnerable ecosystems. Moreover, developing targeted fire management strategies focused on high-risk areas, such as juniper and broadleaf forests must be a priority.
کلیدواژههای انگلیسی مقاله
Auxiliary variables,Climatic indicators,Juniper Forest,Distance to Road,Fire Susceptibility
نویسندگان مقاله
| Ali Asghar Zolfaghari
Associate professor, Faculty of Desert Studies, Semnan University, Semnan, Iran
| Maryam Raeesi
Faculty of Desert Studies, Semnan University, Semnan, Iran
| Zahra Sheikh
Faculty of Desert Studies, Semnan University, Semnan, Iran
| Azadeh Soltani
Faculty of Desert Studies, Semnan University, Semnan, Iran
| Soghra Poodineh
Faculty of Desert Studies, Semnan University, Semnan, Iran
| Mojtaba Amiri
Associate professor, Faculty of Natural Resources, Semnan University, Semnan, Iran
نشانی اینترنتی
http://ecopersia.modares.ac.ir/browse.php?a_code=A-10-84679-2&slc_lang=en&sid=24
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات