|
Iranian Journal of Chemical Engineering، جلد ۲۱، شماره ۴، صفحات ۶۲-۷۷
|
|
|
عنوان فارسی |
|
|
چکیده فارسی مقاله |
|
|
کلیدواژههای فارسی مقاله |
|
|
عنوان انگلیسی |
A Comparative Study of Machine Learning Methods for Pyrolysis Yield Prediction |
|
چکیده انگلیسی مقاله |
This paper presents a machine learning-based approach for accurately predicting pyrolysis product yields. Methods such as Linear Regression (LR), K-Nearest Neighbors (KNN), Decision Tree (DT), Support Vector Regression (SVR), Random Forest (RF), and Neural Networks (NN) leverage operating conditions and/or ultimate/proximate analysis data, eliminating the need for reaction kinetics. This innovative approach offers a broader range and higher accuracy of feedstock compared to traditional kinetics-based methods. The KNN model demonstrated superior performance, achieving a correlation coefficient greater than 0.998 and an RMSE of 0.64. These findings provide valuable insights for engineers and practitioners, facilitating the efficient design and operation of pyrolysis units.The selectivity exhibited a notable increase from 2.46 to 5.27. This improvement in selectivity can primarily be attributed to the significantly higher increase in the solubility coefficient of CO2 compared to that of CH4. |
|
کلیدواژههای انگلیسی مقاله |
Machine Learning,prediction,Pyrolysis,Yield,reaction kinetics,Biomass |
|
نویسندگان مقاله |
Seyed Mohammad Razavi | College of Engineering, University of Tehran
Rahmat Sotudeh Gharebagh |
Navid Mostoufi | College of Engineering, University of Tehran
Jamal Chaouki | Department of Chemical Engineering, Polytechnique Montreal
K.D.P. Nigam | Department of Chemical Engineering, Indian Institute of Technology Delhi
|
|
نشانی اینترنتی |
https://www.ijche.com/article_211760_706ba5fd99c938400637732ea2cb1043.pdf |
فایل مقاله |
فایلی برای مقاله ذخیره نشده است |
کد مقاله (doi) |
|
زبان مقاله منتشر شده |
en |
موضوعات مقاله منتشر شده |
|
نوع مقاله منتشر شده |
|
|
|
برگشت به:
صفحه اول پایگاه |
نسخه مرتبط |
نشریه مرتبط |
فهرست نشریات
|