این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
آب و خاک، جلد ۲۸، شماره ۵، صفحات ۱۰۲۵-۰

عنوان فارسی نقشه برداری رقومی بافت خاک با استفاده از رگرسیون درختی و شبکه عصبی مصنوعی در منطقه بیجار کردستان
چکیده فارسی مقاله در مطالعه حاضر جهت پهنه بندی رقومی کلاس های بافتی خاک در منطقه بیجار کردستان، 103 پروفیل حفر، تشریح و از افق های سطحی A نمونه برداری شد. متغیرهای محیطی یا فاکتورهای خاک سازی که در این پژوهش استفاده شد شامل اجزاء سرزمین، داده های تصویر +ETM ماهواره لندست و نقشه سطوح ژئومورفولوژی می باشد. همچنین، جهت ارتباط دادن بین داده های خاک (رس، شن و سیلت) و متغیرهای کمکی از مدل های شبکه عصبی مصنوعی و رگرسیون درختی بهره گرفته شد. نتایج این تحقیق نشان داد که مدل رگرسیون درختی دارای دقت بیشتری نسبت به شبکه عصبی مصنوعی به منظور پیش بینی هر سه پارامتر رس، شن و سیلت می باشد. برای جزء رس، مدل رگرسیون درختی و شبکه عصبی مصنوعی دارای ضریب تبیین و میانگین ریشه مربعات خطا 46/0، 81/0 و 10/17، 50/12 براساس داده های آزمون (20درصد) می باشد. نتایج نشان داد که برای پیش بینی رس، شن و سیلت پارامترهای سطوح ژئومورفولوژی، شاخص خیسی، شاخص همواری دره با درجه تفکیک بالا، ارتفاع، طول شیب و باند 3 مهم‌ترین بوده اند. در کل نتایج نشان داد که مدل های درختی دارای دقت بالاتری نسبت به روش شبکه عصبی مصنوعی بوده و همچنین تفسیر نتایج مدل درختی بسیار راحت تر می باشد. لذا پیشنهاد می شود که جهت تهیه نقشه رقومی خاک از مدل های درختی در مطالعات آینده استفاده شود.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Digital Mapping of Soil Texture Using Regression Tree and Artificial Neural Network in Bijar, Kurdistan
چکیده انگلیسی مقاله Soil texture is an important soil physical property that governs most physical, chemical, biological, and hydrological processes in soils. Detailed information on soil texture variability is crucial for proper crop and land management and environmental studies. Therefore, at present research, 103 soil profiles were dogged and then sampled in order to prepare digital map of soil texture in Bijar, Kurdistan. Auxiliary data used in this study to represent predictive soil forming factors were terrain attributes, Landsat 7 ETM+ data and a geomorphologic surfaces map. To make a relationship between the soil data set (i.e. Clay, sand and silt) and auxiliary data, regression tree (RT) and artificial neural network (ANN) were applied. Results showed that the RT had the higher accuracy than ANN for spatial prediction of three parameters. For the clay fraction, determination of coefficient (R2) and root mean square root (RMSE) calculated for two models were 0.46, 0.81 and 17.10, 12.50, based on validation data set (20%). Our results showed some auxiliary variables had more influence on predictive soil class model which included: geomorphology map, wetness index, multi-resolution index of valley bottom flatness, elevation, slope length, and B3. In general, results showed that decision tree models had higher accuracy than ANN models and also their results are more convenient for interpretation. Therefore, it is suggested using of decision tree models for spatial prediction of soil properties in future studies.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله کمال نبی الهی |


احمد حیدری |


روح الله تقی زاده مهرجردی |



نشانی اینترنتی http://jsw.um.ac.ir/index.php/jsw/article/view/28735
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/548/article-548-334371.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده علمی - پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات