این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 19 آذر 1404
مجله بهداشت محیط و توسعه پایدار
، جلد ۹، شماره ۳، صفحات ۲۳۰۴-۲۳۱۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Modeling of PM10 Particulate Matter in Ahvaz City Using Remote Sensing and Meteorological Parameters
چکیده انگلیسی مقاله
Introduction:
In recent years, remote sensing (RS) products have emerged as effective tools for monitoring air pollution. This study aims to predict the concentrations of particulate matter with a diameter smaller than 10μm (PM
10
) using a multivariate linear regression (MLR) model, incorporating both Aerosol Optical Depth (AOD) products and meteorological parameters.
Material and Methods:
In this study, data on PM
10
concentrations, Aerosol Optical Depth (AOD), and meteorological parameters (wind speed, temperature, humidity, and horizontal visibility) were used. The study focused on the time 15:00 each day, as this time was identified as having significant data relevance. The methodology section also consisted of three steps: 1) pairwise correlation analysis: The relationship between meteorological parameters, AOD, and PM
10
was assessed using the pairwise correlation method. 2) Model development: A MLR model was developed to predict PM
10
concentrations. 3) Validation: The model was validated using a separate dataset, ensuring that 70% of the data was used for training, and 30% for testing and validation.
Results:
The pairwise correlation analysis revealed a strong correlation (0.86) between AOD remote sensing index and PM
10
. The highest correlation (0.9) was observed during the spring season. The five developed equations to estimate the PM
10
index yielded correlation coefficients ranging from 0.86 to 0.90. Notably, the highest correlation was achieved when AOD data and all the meteorological parameters were utilized simultaneously. These results highlighted the utility of remote sensing products and meteorological data in air quality monitoring and prediction.
Conclusion:
This study demonstrates that a MLR model incorporating AOD and meteorological parameters can effectively predict PM
10
concentrations in Ahvaz City, particularly during dust storms in hot seasons. These findings can aid policymakers and public health officials in developing strategies to mitigate the adverse effects of dust storms on air quality and public health.
کلیدواژههای انگلیسی مقاله
Air Pollution, Remote Sensing, Multivariable regression models, PM10 ,Particulate matter, Ahvaz City
نویسندگان مقاله
| Morteza Abdullatif Khafaie
Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| Mona Saeidi
Department of Environmental Health Engineering, Faculty of Health, Yasuj. University of Medical Sciences, Yasuj, Iran
| Shahin Mohammadi
Department of Remote Sensing and GIS, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| Hossein Marioryad
Department of Environmental Health Engineering, Faculty of Health, Yasuj. University of Medical Sciences, Yasuj, Iran
| Arsalan Jamshidi
Department of Environmental Health Engineering, Faculty of Health, Yasuj. University of Medical Sciences, Yasuj, Iran
نشانی اینترنتی
http://jehsd.ssu.ac.ir/browse.php?a_code=A-10-787-2&slc_lang=en&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
Environmental pollution
نوع مقاله منتشر شده
Original articles
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات