این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 25 آذر 1404
Basic and Clinical Neuroscience
، جلد ۱۵، شماره ۳، صفحات ۳۹۳-۴۰۲
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Feature Extraction With Stacked Autoencoders for EEG Channel Reduction in Emotion Recognition
چکیده انگلیسی مقاله
Introduction
: Emotion recognition by electroencephalogram (EEG) signals is one of the complex methods because the extraction and recognition of the features hidden in the signal are sophisticated and require a significant number of EEG channels. Presenting a method for feature analysis and an algorithm for reducing the number of EEG channels fulfills the need for research in this field.
Methods
: Accordingly, this study investigates the possibility of utilizing deep learning to reduce the number of channels while maintaining the quality of the EEG signal. A stacked autoencoder network extracts optimal features for emotion classification in valence and arousal dimensions. Autoencoder networks can extract complex features to provide linear and non- linear features which are a good representative of the signal.
Results
: The accuracy of a conventional emotion recognition classifier (support vector machine) using features extracted from SAEs was obtained at 75.7% for valence and 74.4% for arousal dimensions, respectively.
Conclusion
: Further analysis also illustrates that valence dimension detection with reduced EEG channels has a different composition of EEG channels compared to the arousal dimension. In addition, the number of channels is reduced from 32 to 12, which is an excellent development for designing a small-size EEG device by applying these optimal features.
کلیدواژههای انگلیسی مقاله
Deep learning, Stacked auto-encoder, Channel reduction, Electroencephalogram (EEG) analysis, Emotion
نویسندگان مقاله
| Elnaz Vafaei
Department of Biomedical Engineering, Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| Fereidoun Nowshiravan Rahatabad
Department of Biomedical Engineering, Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| Seyed Kamaledin Setarehdan
School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran.
| Parviz Azadfallah
Faculty of Humanities, Tarbiat Modares University, Tehran, Iran.
نشانی اینترنتی
http://bcn.iums.ac.ir/browse.php?a_code=A-10-5138-2&slc_lang=en&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
Cognitive Neuroscience
نوع مقاله منتشر شده
Original
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات