این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Chemical and Petroleum Engineering، جلد ۵۸، شماره ۱، صفحات ۱۸۹-۲۰۷

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Quantifying Uncertainty of Green Inhibition Efficiency of Luffa Cylindrica Leaf Extract on Mild Steel in Acidic Medium
چکیده انگلیسی مقاله Green corrosion inhibitors, such as Luffa Cylindrica leaf extract, have demonstrated outstanding inhibitory efficiency on mild steel in acidic environments. However, their effective design and optimization are limited and time-consuming owing to the associated uncertainties. Quantifying these uncertainties remains a challenge due to the requirement of many model realisations to capture and represent the true distribution of uncertainty. This study built a Response Surface Model (RSM) approximation of corrosion inhibition efficiency (IE) for effective optimization and uncertainty propagation. To quantify the uncertainties, we explored two stochastic methods: Monte Carlo Simulation (MCS) and Markowitz classical theory with the Genetic Algorithm (GA). The two approaches differ in propagation, sampling, and the number of realizations. MCS uses the approximation RSM with 10,000 randomly generated realizations, whereas the Markowitz technique uses the mean-variance objective function with just 100 realizations. Markowitz's classical theory revealed a 50 and 99.9% chance that the IE of Luffa Cylindrica leaf extract is 79.7 and 76.5%, respectively while MCS indicates at least 10 and 90% probabilities that the IE of Luffa Cylindrica leaf extract is 85.16 and 74.14%, respectively. When compared to the 88.4% efficiency previously reported for the same extract, the two techniques indicate less than 10% chances for IE. As a result, for the actual implementation of green inhibitors, their assessment must include uncertainty analysis.
کلیدواژه‌های انگلیسی مقاله Green Inhibitor,Inhibition Efficiency,Luffa Cylindrical,Monte Carlo simulation,Uncertainty analysis

نویسندگان مقاله Akeem Olatunde Arinkoola |
Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria. Department of Chemical and Petroleum Engineering, First Technical University, Ibadan, Nigeria.

Eunice Folaade Oyelade |
Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

Mariam Omowumi Alesinladu |
Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

Azeez Gbolahan Akinyemi |
Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

Solomon Oluyemi Alagbe |
Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

Oladipupo Olaosebikan Ogunleye |
Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria


نشانی اینترنتی https://jchpe.ut.ac.ir/article_96086_ec92921b5389b2636632a97952c37143.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات