این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Ecopersia، جلد ۱۲، شماره ۲، صفحات ۱۰۷-۱۱۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Evaluation of Multi-Sensor Satellite Data Accuracy for LU/LC Classification: Insights from Cartosat-1 and Liss-Iv Imagery In 2021
چکیده انگلیسی مقاله
Aim: Due to increasing flaws in digital satellite images, the classification of land use and land cover (LU/LC) must be done accurately. It is important to assess the  accuracy of Cartosat-1 and LISS-IV data, concentrating on how well-suited these data sets were for mapping and tracking land use and cover. The purpose of the study was to evaluate how well these datasets distinguished between various land cover categories.
Method: Supervised classification is crucial for accurate mapping and monitoring land cover and land use dynamics. It uses known samples to train classification algorithms, enabling detailed analysis and decision-making, and distinguishing subtle spectral variations. A total of 200 points were randomly selected in the study area using stratified random selection methodology for accuracy assessment which was verified using Google earth.
Findings: The results of study show that the overall accuracy for LU/LC classification of Cartosat-1 and LISS-IV for the year 2021 was obtained as 92% and 88.50% respectively with corresponding kappa coefficient values as 0.90 and 0.86 respectively which proves that data from Cartosat-1 is more accurate as compared to LISS-IV for LU/LC classification. It was also found that LU/LC classes belongs to both classified data of Cartosat-1 and LISS-IV data showed variability in their areas. Due to the high spatial resolution of Cartosat-1 data LULC classes  edge to edge classification results have been obtained. Different feature have been purely identified and classified. 
Conclusion: Cartosat-1 dataset is better than LISS-IV dataset for deailed LU/LC classification due to its high spatial resolution.
کلیدواژه‌های انگلیسی مقاله Accuracy assessment,Cartosat-1,LISS-IV,LU/LC,Supervised classification

نویسندگان مقاله | Amritpal Digra
Research Scientist, Department of Space, National Remote Sensing Centre, Indian Space Research Organisation, Regional Remote Sensing Centre, North, New Delhi-110049.


| Arun Kaushal
Professor, Dept of Soil and Water Engineering, Punjab Agricultural University, Ludhiana, Punjab, India


| Dikesh Chandra Loshali
Scientist SG, Punjab Remote Sensing Centre, Ludhiana, Punjab, India



نشانی اینترنتی http://ecopersia.modares.ac.ir/browse.php?a_code=A-10-73734-2&slc_lang=en&sid=24
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات