این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
Basic and Clinical Neuroscience
، جلد ۱۵، شماره ۲، صفحات ۱۹۹-۲۱۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Graph-based Analysis to Predict Repetitive Transcranial Magnetic Stimulation Treatment Response in Patients With Major Depressive Disorder Using EEG Signals
چکیده انگلیسی مقاله
Introduction
: Repetitive transcranial magnetic stimulation (rTMS) is a non-pharmacological treatment for drug-resistant major depressive disorder (MDD) patients. Since the success rate of rTMS treatment is about 50%-55%, it is essential to predict the treatment outcome before starting based on electroencephalogram (EEG) signals, leading to identifying effective biomarkers and reducing the burden of health care centers.
Methods
: To this end, pretreatment EEG data with 19 channels in the resting state from 34 drug-resistant MDD patients were recorded. Then, all patients received 20 sessions of rTMS treatment, and a reduction of at least 50% in the total beck depression inventory (BDI-II) score before and after the rTMS treatment was defined as a reference. In the current study, effective brain connectivity features were determined by the direct directed transfer function (dDTF) method from patients’ pretreatment EEG data in all frequency bands separately. Then, the brain functional connectivity patterns were modeled as graphs by the dDTF method and examined with the local graph theory indices, including degree, out-degree, in-degree, strength, out-strength, in-strength, and betweenness centrality.
Results
: The results indicated that the betweenness centrality index in the Fp2 node and the δ frequency band are the best biomarkers, with the highest area under the receiver operating characteristic curve value of 0.85 for predicting the rTMS treatment outcome in drug-resistant MDD patients.
Conclusion
: The proposed method investigated the significant biomarkers that can be used to predict the rTMS treatment outcome in drug-resistant MDD patients and help clinical decisions.
کلیدواژههای انگلیسی مقاله
Effective connectivity, electroencephalogram (EEG), Graph theory, Major depressive disorder (MDD), Repetitive transcranial magnetic stimulation (rTMS)
نویسندگان مقاله
| Behrouz Nobakhsh
Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| Ahmad Shalbaf
Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| Reza Rostami
Department of Psychology, Faculty of Education and Psychology, University of Tehran, Tehran, Iran.
| Reza Kazemi
Department of Entrepreneurship Development, Faculty of Entrepreneurship, University of Tehran, Tehran, Iran.
نشانی اینترنتی
http://bcn.iums.ac.ir/browse.php?a_code=A-10-2034-5&slc_lang=en&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
Cognitive Neuroscience
نوع مقاله منتشر شده
Original
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات