این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 3 آذر 1404
International Journal of Engineering
، جلد ۳۷، شماره ۹، صفحات ۱۷۱۶-۱۷۳۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
A New Optimization Algorithm Based on Particle Swarm Optimization Genetic Algorithm and Sliding Surfaces
چکیده انگلیسی مقاله
To enhance the performance of meta-heuristic algorithms, the development of new operators and the efficient combination of various optimization techniques are valuable strategies for discovering global optimal solutions. In this research endeavor, we introduce a novel optimization algorithm called PGS (Particle Swarm Optimization-GA-Sliding Surface). PGS combines the strengths of particle swarm optimization (PSO), genetic algorithm (GA), and sliding surface (SS) to tackle both mathematical test functions and real-world optimization problems. To achieve this, we adaptively tune the weighting function and learning coefficients of the PSO algorithm using the sliding mode control's SS relation. The global best particle discovered through the PSO method serves as one of the parents in the GA's crossover operation. This new crossover operator is then probabilistically integrated with an improved particle swarm optimization algorithm, enhancing convergence speed and facilitating escape from local optima. We evaluate the proposed algorithm's performance on both uni-modal and multi-modal mathematical test functions, considering un-rotated and rotated cases, thereby testing its effectiveness and efficiency against other prominent optimization techniques. Furthermore, we successfully implement the PGS algorithm in optimizing the state feedback controller for a nonlinear quadcopter system and determining the cross-section for an inelastic compression member.
کلیدواژههای انگلیسی مقاله
Particle Swarm Optimization,Genetic Algorithm,sliding surface,Optimal control,Nonlinear quadcopter system,Inelastic compression member
نویسندگان مقاله
M. J. Mahmoodabadi |
Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, Iran
A. R. Nemati |
Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, Iran
N. Danesh |
Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, USA
نشانی اینترنتی
https://www.ije.ir/article_190078_12ea75e2c18538977ba10e6e1a993904.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات