این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 22 آذر 1404
Poultry Science Journal
، جلد ۱۲، شماره ۱، صفحات ۱۰۷-۱۱۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Investigation of Egg Quality Characteristics Affecting Egg Weight of Lohmann Brown Hen with Data Mining Methods
چکیده انگلیسی مقاله
Hen egg weight is one of the most important traits in the egg production industry; however, the egg traits influencing it are poorly understood. Random forest (RF), multivariate adaptive regression spline (MARS), classification and regression trees (CART), bagging MARS, chi-square automatic interaction detector (CHAID), and exhaustive CHAID were used in egg weight (EW) prediction from selected egg quality characteristics in chicken. A total of 400 egg weight (EW), egg length (EL), egg width (EWD), shell weight (SW), yolk weight (YW), and albumen weight (AW) predictors were turned into account. The goodness-of-fit criteria were used to select the best model to estimate Lohman Brown hen egg weight. The data was separated into train and test datasets for validation using a 10-fold cross-validation. The most significant EW predictors were albumen weight, egg width, and egg length. The correlation coefficient (r) value ranged from 0.957 (CHAID) to 0.99999 (MARS and Bagging MARS). The lowest RMSE (0.001) was found for MARS and bagging MARS algorithms and the highest (2.154) was obtained for CHAID. In general, the implemented algorithms excellently predicted the EW of hens. The ascertainment of the egg quality characteristics associated with EW using data mining algorithms can be considered an indirect selection criterion for further chicken breeding programs.
کلیدواژههای انگلیسی مقاله
Egg, MARS, Chicken, Bagging MARS, Random Forest
نویسندگان مقاله
Thobela Louis Tyasi |
School of Agricultural and Environmental Sciences, Department of Agricultural Economics and Animal Production, University of Limpopo, South Africa
Şenol Çelik |
Department of Animal Science, Biometry Genetics Unit, Agricultural Faculty, Bingöl University, Bingöl, Türkey
نشانی اینترنتی
https://psj.gau.ac.ir/article_6806_412d51de1eccc8aa7dc6ef2956542a5c.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات