این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
مجله بهداشت محیط و توسعه پایدار
، جلد ۹، شماره ۱، صفحات ۲۱۸۰-۲۱۹۴
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Determining Effective Factors Regarding Weather and Some Types of Air Pollutants in Seasonal Changes of PM10 Concentration Using Tree-Based Algorithms in Yazd City
چکیده انگلیسی مقاله
Introduction:
This study was carried out with the aim of determining weather parameters and air pollutants affecting seasonal changes of particulate matter of less than 10 microns (PM
10
) in Yazd city using Random Forest (RF) and extreme gradient boosting (Xgboost) models.
Materials and Methods:
The required data was obtained from 2018 to 2022. Levene’s test was applied to investigate the significant difference in the variance of PM
10
values in 4 different seasons, and Boruta algorithm was used to select the best predictive variables. RF and Xgboost models were trained using two-thirds of the input data and were tested using the remaining data set. Their performance was evaluated based on R
2
, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Nash–Sutcliffe Model Efficiency Coefficient (NSE).
Results:
The RF showed a higher performance in predicting PM
10
in all the study seasons (R
2
> 0.85; RMSE < 22). The contribution of dust concentration and relative humidity in spring PM
10
changes was more than other variables. For summer, wind direction and ozone were identified as the most important variables affecting PM
10
concentration. In the autumn and winter, air pollutants and dust concentration had the greatest effect on PM
10
, respectively.
Conclusion
: RF model could explain more than 85% of PM
10
seasonal variability in Yazd city. It is recommended to use the model to predict the changes of this air pollutant in other regions with similar climatic and environmental conditions. The results can also be useful for providing suitable solutions to reduce PM
10
pollution hazards in Yazd city.
کلیدواژههای انگلیسی مقاله
Air Pollution, Particulate Matter, Dust, Machine Learning, Random Forest.
نویسندگان مقاله
| Zohre Ebrahimi-Khusfi
Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.
| Mohsen Ebrahimi-Khusfi
Department of Geography, Yazd University, Yazd, Iran.
| Ali Reza Nafarzadegan
Department of Natural Resources Engineering, University of Hormozgan, Bandar-Abbas, Hormozgan, Iran.
| Mojtaba Soleimani-Sardo
Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.
نشانی اینترنتی
http://jehsd.ssu.ac.ir/browse.php?a_code=A-10-724-1&slc_lang=en&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
Environmental pollution
نوع مقاله منتشر شده
Original articles
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات