این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 22 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۵، شماره ۲، صفحات ۳۹-۴۶
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Hybrid of particle swarm optimization algorithm and fuzzy system for diabetes diagnosis
چکیده انگلیسی مقاله
Diabetes is a dangerous disease in which the body is incapable of controlling blood sugar due to inadequate insulin hormone levels. This chronic disease increases blood sugar in patients. Therefore, if it is not controlled, it will cause many complications. A considerable number of people in the world suffer from this disease owing to its damage and lack of its initial diagnosis. The patient visits the doctor frequently to diagnose his/her illness and conducts various tests that are boring and costly. Increasing machine learning approaches through heuristics, and novel methods can somewhat decrease the problems. The current study aims to propose a model that can predict diabetes in patients with high accuracy. The paper introduces a new method based on the assortment of metaheuristic algorithms of a particle swarm and fuzzy inference system. The proposed method utilizes fuzzy systems to binary the particle swarm algorithm. The achieved model is applied to the diabetes dataset and then evaluated using a neural network classifier. The results indicate an increase in classification accuracy to 95.47% compared to other existing methods.
کلیدواژههای انگلیسی مقاله
Diabetes, PSO Algorithm, Neural Networks, Fuzzy systems, Meta-heuristic algorithms
نویسندگان مقاله
Reza Ghabousian |
Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
Yousef Farhang |
Department of Computer Engineering, Khoy Branch, Islamic Azad University, Khoy, Iran
Kambiz Majidzadeh |
Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
Amin Babazadeh Sangar |
Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_7640_162691706213651df44e641e2bc985e4.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات