این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 27 مهر 1404
Iranian Journal of Chemistry and Chemical Engineering
، جلد ۳۹، شماره ۴، صفحات ۲۶۹-۲۸۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Prediction of CO2 Mass Transfer Flux in Aqueous Amine Solutions Using Artificial Neural Networks
چکیده انگلیسی مقاله
In the present research, neural networks were applied to predict mass transfer flux of CO
2
in
aqueous amine solutions
. Buckingham π theorem was used to determine the effective dimensionless parameters on CO
2
mass transfer flux in reactive separation processes.
The dimensionless parameters including
CO
2
loading, the ratio of
CO
2
diffusion coefficient of gas to a liquid,
the ratio of the
CO
2
partial pressure to the total pressure, the ratio of film thickness of gas to liquid
and film parameter as input variables and
mass transfer flux
of
CO
2
as output variables were
in the modeling. A multilayer perceptron network was used in the prediction of CO
2
mass transfer flux.
As a case study, experimental data of CO
2
absorption into Piperazine solutions were used in the learning
, testing, and
evaluating
steps of the
multilayer perceptron
. The
optimal structure of
the
multilayer perceptron contains 21 and 17 neurons in two hidden layers.
The predicting results of
the
network indicated that the mean square error for mass transfer flux was 4.48%. In addition, the results
of the
multilayer perceptron
were compared with the predictions of other researchers’ results.
The findings revealed that the artificial neural network computes the mass transfer flux of
CO
2
more accurately and more quickly.
کلیدواژههای انگلیسی مقاله
prediction,Absorption,Mass Transfer Flux,CO2,Piperazine,Multilayer Perceptron
نویسندگان مقاله
Ahad Ghaemi |
School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, P.O. Box 16765-163, Tehran, I.R. IRAN
Zahra Jafari |
School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, P.O. Box 16765-163, Tehran, I.R. IRAN
Edris Etemad |
School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, P.O. Box 16765-163, Tehran, I.R. IRAN
نشانی اینترنتی
https://ijcce.ac.ir/article_31858_460003d97a4a22bcdead3cef3a39b16b.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات