این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Engineering، جلد ۳۳، شماره ۷، صفحات ۱۲۴۹-۱۲۵۶

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A Comparative Analysis of Wavelet-Based FEMG Signal Denoising with Threshold Functions and Facial Expression Classification Using SVM and LSSVM
چکیده انگلیسی مقاله This work presents a technique for the analysis of facial electromyogram signal activities to classify five different facial expressions for computer-muscle interfacing applications. Facial electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researcher, where classification accuracy is key concerns. Artifacts, such as eyeblink activity and electroencephalogram (EEG) signals interference, can corrupt these FEMG signals and directly affected the classification results. In this work, a robust wavelet-based thresholding technique, which comprised of a wavelet transform (WT) method and the statistical threshold, is proposed to remove the different artifacts from FEMG datasets and improve recognition accuracy rate. A set of five different raw FEMG data set was analyzed. Four wavelet basis functions, namely, haar, coif3, sym3, and bior4.4, were considered. The performance parameters (signal-to-artifact ratio (SAR) and normalized mean square error (NMSE) were utilized to understand the effect of the proposed signal denoising protocol. After denoising, the effectiveness of different statically features has been extracted. Two pattern recognition algorithms support vector machine (SVM) and the least square support vector machine (LSSVM) are implemented to classify extracted features. The performance accuracy of SVM and LSSVM classifier was evaluated and compared to know which classifier is the best for facial expression classification.  The results showed that: (i) the proposed technique for denoising, improves the performance parameter results; (ii) The proposed work gives the best 95.24% classification accuracy.
کلیدواژه‌های انگلیسی مقاله Facial Electromyogram Wavelet Transform Support Vector Machine Least,square Support Vector Machine

نویسندگان مقاله V. Kehri |
Department of Electrical Engineering, VJTI Mumbai, India

R. N. Awale |
Department of Electrical Engineering, VJTI Mumbai, India


نشانی اینترنتی https://www.ije.ir/article_108439_e31aa08568c5132407c56d306cd413cf.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات