این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Engineering، جلد ۳۴، شماره ۱، صفحات ۲۱۲-۲۲۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Gear Fault Detection using Machine Learning Techniques- A Simulation-driven Approach
چکیده انگلیسی مقاله Machine Learning (ML) based condition monitoring and fault detection of industrial equipment is the current scenario for maintenance in the era of Industry-4.0. The application of ML techniques for automatic fault detection minimizes the unexpected breakdown of the system. However, these techniques heavily rely on the historical data of equipment for its training which limits its widespread application in industry. As the historical data is not available for each industrial machine and generating the data experimentally for each fault condition is not viable. Therefore, this challenge is addressed for gear application with tooth defect. In this paper, ML algorithms are trained using simulated vibration data of the gearbox and tested with the experimental data. Simulated data is generated for the gearbox with different operating and fault conditions. A gearbox dynamic model is utilized to generate simulated vibration data for normal and faulty gear condition. A pink noise is added to simulated data to improve the exactness to the actual field data.  Further, these simulated-data are processed using Empirical Mode Decomposition and Discrete Wavelet Transform, and features are extracted. These features are then fed to the training of different well-established ML techniques such as Support Vector Machine, Random Forest and Multi-Layer Perceptron. To validate this approach, trained ML algorithms are tested using experimental data. The results show more than 87% accuracy with all three algorithms. The performance of the trained model is evaluated using precision, recall and ROC curve. These metric show the affirmative results for the applicability of this approach in gear fault detection.
کلیدواژه‌های انگلیسی مقاله Machine Learning,Simulated data,Vibration Analysis,Gear fault diagnosis,Condition Monitoring

نویسندگان مقاله V. C. Handikherkar |
Department of Mechanical Engineering, Veermata Jijabai Technological Institute (VJTI), Mumbai, India

V. M. Phalle |
Department of Mechanical Engineering, Veermata Jijabai Technological Institute (VJTI), Mumbai, India


نشانی اینترنتی https://www.ije.ir/article_122167_5ea873702522f32ffb7f2959ed5986ad.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات