|
International Journal of Engineering، جلد ۳۴، شماره ۸، صفحات ۲۰۲۸-۲۰۳۷
|
|
|
عنوان فارسی |
|
|
چکیده فارسی مقاله |
|
|
کلیدواژههای فارسی مقاله |
|
|
عنوان انگلیسی |
Holistic Persian Handwritten Word Recognition Using Convolutional Neural Network |
|
چکیده انگلیسی مقاله |
Due to the cursive-ness and high variability of Persian scripts, the segmentation of handwritten words into sub-words is still a challenging task. These issues could be addressed in a holistic approach by sidestepping segmentation at the character level. In this paper, an end-to-end holistic method based on deep convolutional neural network is proposed to recognize off-line Persian handwritten words. The proposed model uses only five convolutional layers and two fully connected layers for classifying word images effectively, which can lead to a substantial reduction in parameters. The effect of various pooling strategies is also investigated in this paper. The primary goal of this article is to ignore handcrafted feature extraction and attain a generalized and stable word recognition system. The presented model is assessed using two famous handwritten Persian word databases called Sadri and IRANSHAHR. The recognition accuracies were obtained at 98.6% and 94.6%, on Sadri and IRANSHAHR datasets respectively, and outperformed the state-of-the-art methods. |
|
کلیدواژههای انگلیسی مقاله |
Persian handwritten word recognition,convolutional neural network,End-to-end learning method,Transfer learning,Persian handwritten dataset |
|
نویسندگان مقاله |
A. Zohrevand | Computer Engineering Department, Kosar University of Bojnord, Bojnord, Iran
Z. Imani | Computer Engineering Department, Kosar University of Bojnord, Bojnord, Iran
|
|
نشانی اینترنتی |
https://www.ije.ir/article_133939_817da42bb0a10b58ef95a2eb6d87156c.pdf |
فایل مقاله |
فایلی برای مقاله ذخیره نشده است |
کد مقاله (doi) |
|
زبان مقاله منتشر شده |
en |
موضوعات مقاله منتشر شده |
|
نوع مقاله منتشر شده |
|
|
|
برگشت به:
صفحه اول پایگاه |
نسخه مرتبط |
نشریه مرتبط |
فهرست نشریات
|