International Journal of Engineering، جلد ۳۴، شماره ۹، صفحات ۲۱۸۰-۲۱۸۸

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Memristor Crossbar-Based Hardware Implementation of Type-2 Fuzzy Membership Function and On-Chip Learning
چکیده انگلیسی مقاله Utilizing fuzzy techniques, especially fuzzy type-2, is one of the most widely used methods in machine learning to model uncertainty. In addition to algorithm provision, the hardware implementation capability, and proper performance in real-time applications are other challenges. The use of hardware platforms that have biological similarities and are comparable to human neural systems in terms of implementation volume has always been considered. Memristor is one of the emerging elements for the implementation of fuzzy logic based algorithms. In this element, by providing current and selecting the appropriate direction for the applied current, the resistance of the memristor (memristance) will increase or decrease. Various implementations of type-1 fuzzy systems exist, but no implementation of type-2 fuzzy systems has been done based on memristors. In this paper, memristor-crossbar structures are used to implement type-2 fuzzy membership functions. In the proposed hardware, the membership functions can have any shape and resolution. Our proposed implementation of type-2 fuzzy membership function has the potential to learn (On-Chip learning capability regardless of host system). Besides, the proposed hardware is analog and can be used as a basis in the construction of evolutionary systems. Furthermore, the proposed approach is applied to memristor emulator to demonstrate its correct operation.
کلیدواژه‌های انگلیسی مقاله Fuzzy inference system,Fuzzy Membership Function,Type-1 Fuzzy (T1F),Type-2 Fuzzy (T2F),Hardware Implementation,Memristor-Crossbar Structures

نویسندگان مقاله S. Haghzad Klidbary |
Department of Electrical and Computer Engineering, University of Zanjan, Zanjan, Iran

M. Javadian |
Computer Department, Kermanshah University of Technology, Kermanshah, Iran

R. Omidi |
Department of Electrical Engineering, University of Zanjan, Zanjan, Iran

R. P. R. Hasanzadeh |
Department of Electrical Engineering, University of Guilan, Rasht, Iran


نشانی اینترنتی https://www.ije.ir/article_135137_b5676da1c9485bf2a6945c6d146f8256.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات