این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Engineering، جلد ۳۵، شماره ۴، صفحات ۸۱۰-۸۱۸

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Refractive Index Perception and Prediction of Radio wave through Recursive Neural Networks using Meteorological Data Parameters
چکیده انگلیسی مقاله Radio refractivity is very crucial in the optimal performance of radio systems and is one of the attributes that affect electromagnetic waves in the troposphere. This study presented a comparison of different variants of recurrent neural networks to predict radio refractivity index. The radio refractivity index is predicted based on forty-one years (1980 to 2020) metrological data obtained from the MERRA-2 data re-analysis database. The refractivity index was computed using International Telecommunication :union: (ITU) standard. The correlation refractivity index was categorized into strong, weak and no correlation. Rainfall, relative humidity, and air pressure fall in the first category, the temperature falls in the second category while wind speed falls in the last one. The true future and predicted values of the radio refractivity index are close with GRU performing better than the other two models (LSTM and BiLSTM) which proves the accuracy of the proposed model. In conclusion, the proposed model can establish a radio refractivity status of locations at different times of the season, which is of great importance in the effective design, development, and deployment of radio communication systems.
کلیدواژه‌های انگلیسی مقاله Radio refractivity,Meteorological data,International Telecommunication :union:,Long-short Term Memory,Wireless communication

نویسندگان مقاله S. Adebayo |
Mechatronics Engineering Programme, College of Agriculture, Engineering, and Science, Bowen University, Iwo, Osun State, Nigeria

F. O. Aweda |
Physics and Solar Energy Programme, College of Agriculture, Engineering, and Science, Bowen University, Iwo, Osun State, Nigeria

I. A. Ojedokun |
Electrical and Electronics Department, Federal University, Otuoke, Nigeria

O. T. Olapade |
Physics and Solar Energy Programme, College of Agriculture, Engineering, and Science, Bowen University, Iwo, Osun State, Nigeria


نشانی اینترنتی https://www.ije.ir/article_142217_a4ee9d9eeeb13a5b1285f416e9ef5d35.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات