|
International Journal of Engineering، جلد ۳۶، شماره ۸، صفحات ۱۴۴۰-۱۴۴۸
|
|
|
عنوان فارسی |
|
|
چکیده فارسی مقاله |
|
|
کلیدواژههای فارسی مقاله |
|
|
عنوان انگلیسی |
Multimodal Spatiotemporal Feature Map for Dynamic Gesture Recognition from Real Time Video Sequences |
|
چکیده انگلیسی مقاله |
The utilization of artificial intelligence and computer vision has been extensively explored in the context of human activity and behavior recognition. Numerous researchers have investigated and suggested various techniques for human action recognition (HAR) to accurately identify actions from real-time videos. Among these techniques, convolutional neural networks (CNNs) have emerged as the most effective and widely used for activity recognition. This work primarily focuses on the significance of spatial information in activity/action classification. To identify human actions and behaviors from large video datasets, this paper proposes a two-stream spatial CNN approach. One stream, based on RGB data, is fed with the spatial information from unprocessed RGB frames. The second stream is powered by graph-based visual saliency maps generated by GBVS (Graph-Based Visual Saliency) method. The outputs of the two spatial streams were combined using sum, max, average, and product feature fusion techniques. The proposed method is evaluated on well-known benchmark human action datasets, such as KTH, UCF101, HMDB51, NTU RGB-D, and G3D, to assess its performance Promising recognition rates were observed on all datasets. |
|
کلیدواژههای انگلیسی مقاله |
2D Video Data,3D Video Data,Human Action recognition,Visual Saliency,Deep Learning |
|
نویسندگان مقاله |
S. Reddy P. | Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur AP, India
C. Santhosh | Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur AP, India
|
|
نشانی اینترنتی |
https://www.ije.ir/article_171359_7d2b1fbf064920bb02ac15e8313094d6.pdf |
فایل مقاله |
فایلی برای مقاله ذخیره نشده است |
کد مقاله (doi) |
|
زبان مقاله منتشر شده |
en |
موضوعات مقاله منتشر شده |
|
نوع مقاله منتشر شده |
|
|
|
برگشت به:
صفحه اول پایگاه |
نسخه مرتبط |
نشریه مرتبط |
فهرست نشریات
|