این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 9 آذر 1404
International Journal of Engineering
، جلد ۳۶، شماره ۹، صفحات ۱۶۱۱-۱۶۱۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Land Covers Classification from LiDAR-DSM Data Based on Local Kernel Matrix Features of Morphological Profiles
چکیده انگلیسی مقاله
Accurate land cover classification from the digital surface model (DSM) obtained from LiDAR sensors is a challenging topic that researchers have considered in recent years. In general, the classification accuracy of land covers leads to low accuracy using a single-band DSM image. Hence, it seems necessary to develop efficient methods to extract relevant spatial information, which improves classification accuracy. In this regard, using spatial features based on morphological profiles (MPs) has significantly increased classification accuracy. Despite MPs' efficiency in increasing the DSM's classification accuracy, the classification accuracy results under the situation of limited training samples are not still at satisfactory levels. The main novelty of this paper is to propose a new feature space based on local kernel descriptors obtained from MP for addressing the mentioned challenge of MP-based DSM classification. These innovative feature vectors consider local nonlinear dependencies and higher-order statistics between the morphological features. The experiments of this study are conducted on two well-known DSM datasets of Houston and Trento. Our results show that support vector machine (SVM)-based DSM classification with the new local kernel features achieved an average accuracy of 93.75%, which is much better than conventional SVM classification with single-band DSM and MP features (by about 57% and 11.5% on average, respectively). Additionally, our proposed method outperformed two other DSM classification methods by an average of 4.7%.
کلیدواژههای انگلیسی مقاله
LIDAR,Digital Surface Model,Morphological profiles,Local kernel features,Support Vector Machine
نویسندگان مقاله
B. Asghari Beirami |
Department of Photogrammetry and Remote Sensing, Faculty of Geodesy and Geomatics, K. N. Toosi University of Technology, Tehran, Iran
M. Mokhtarzade |
Department of Photogrammetry and Remote Sensing, Faculty of Geodesy and Geomatics, K. N. Toosi University of Technology, Tehran, Iran
نشانی اینترنتی
https://www.ije.ir/article_172538_2dadec0ba10afb13ab5dc6e97bd7dc77.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات