این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 14 مهر 1404
Ecopersia
، جلد ۱۱، شماره ۳، صفحات ۲۵۵-۲۷۴
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Enhancing Soil Moisture Estimation: Exploring the Synergy of Optical Trapezoid and Deep Learning models
چکیده انگلیسی مقاله
Aims: This study aimed to propose an effective model for estimating soil moisture by integrating the optical trapezoid method with a deep learning Long Short-Term Memory (LSTM) model. The performance of the proposed model was compared with two other methods, i.e., Partial Least Squares (PLS) regression and Group Method of Data Handling (GMDH) multivariate neural network. Materials & Methods: This study combined the optical trapezoid method with deep learning models to propose an effective model for soil moisture estimation in the Maragheh watershed. A total of 499 in-situ soil moisture data were collected. Relative moisture content was calculated using the optical trapezoid method and imported into the LSTM model, along with other inputs such as spectral indices and DEM-based derived variables. The performance of the mentioned models was assessed both with and without the optical trapezoid method to evaluate its efficacy on the performance of AI models. Findings: The results demonstrate that the combined model of deep learning LSTM and the optical trapezoid method achieves satisfactory performance, with an R2 of 0.95 and a RMSE of 1.7%. The PLS and GMDH methods performed moderately, both without the involvement of the optical trapezoid method and in the combined mode. Conclusion: This study shows that the optical trapezoid method can improve the performance of deep-learning models in estimating soil moisture. However, considering the significant difference in computational costs among these models, choosing the appropriate model depends on the user's objectives and desired level of accuracy and precision.
کلیدواژههای انگلیسی مقاله
deep learning,Optical trapezoid method,remote sensing,Sentinel-2,soil moisture.
نویسندگان مقاله
| Golnaz Zuravand
Department of Watershed Management Engineering, Faculty of Natural resources, Tarbiat Modares University, Tehran, Iran.
| Vahid Moosavi
Department of Watershed Management Engineering, Faculty of Natural resources, Tarbiat Modares University, Tehran, Iran.
| Seyed Rashid Fallah Shamsi
Department of Natural Resource and Environment, Shiraz University, Iran And Visiting Scientist, Institute of Geographical Science and Natural Resources Research-Chinese Academy of Sciences, Beijing, P.R.China
نشانی اینترنتی
http://ecopersia.modares.ac.ir/browse.php?a_code=A--51485-3&slc_lang=&sid=24
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات