این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۴، شماره ۸، صفحات ۲۸۳-۲۹۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Comparison study for NLP using machine learning techniques to detecting SQL injection vulnerabilities
چکیده انگلیسی مقاله
Due to the vast number of electronic attacks that occur on a daily basis, protecting users' data is extremely important in this age of technology. Nowadays, cyber security is regarded as a top priority. Thus, the preservation of user privacy and data security is essential. The SQL vulnerability isn't a new form of website attack; it's been around for a long time. However, it is a new attack nowadays. ML algorithms were used to solve the problem of detecting SQL Injection attacks on websites. By training seven ML algorithms on a batch of data comprising SQL injection queries, including (Naive Bayes, Neural-Network, SVM, Random-Forest, KNN, and Logistic Regression) and choosing the best model that gives the highest accuracy. In comparison to previous studies, high-precision data were obtained, with the Naive-Bayes algorithm achieving 0.99 accuracies, 0.98 precision, 1.00 recall, and a 0.99 f1-score. In this paper, experiences, work schedules, and outcomes are examined. Compared to other methods, this naive Bayes approach has proven to be quite accurate in identifying SQL injection threats.
کلیدواژههای انگلیسی مقاله
security, Attacks, SQL injection, machine learning, Deep learning
نویسندگان مقاله
Manar Hasan Ali AL-Maliki |
Computer Science Department, Informatics Institute for Postgraduate Studies, Iraq
Mahdi Nsaif Jasim |
University of Information Technology and Communications, Iraq
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_7473_e17cf411885279d298e40f6beed78511.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات