این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۴، شماره ۷، صفحات ۳۵-۴۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی The asymptotic stability of a fractional epidemiological model "Covid 19 Variant Anglais" with Caputo derivative
چکیده انگلیسی مقاله We have all been injured by corona and its mutations, not just us but the whole world. The global impact of coronavirus (COVID-19) has been profound and the public health threat it represents is the most serious seen in a respiratory virus since 1918. This paper is concerned with a fractional order $S_{N}S_{C}IR$ model involving the Caputo fractional derivative. The effective methods to solve the fractional epidemic models we introduced to construct a simple and effective analytical technique that can be easily extended and applied to other fractional models and can help guide the concerned bodies in preventing or controlling, even predicting the infectious disease outbreaks. The equilibrium points and the basic reproduction number are computed. An analysis of the local asymptotic stability at the disease-free equilibrium is given; Next, we study the stability of the equilibrium points in the sense of Mittag-Leffler. Moreover, some numerical simulations are included to verify the theoretical achievement. These results provide good evidence for the implications of the theoretical results corresponding to the model.
کلیدواژه‌های انگلیسی مقاله Mittag-Leffler, Global Stability, Lyapunov function

نویسندگان مقاله Khadija Channan |
LMACS, FST of Beni Mellal, Sultan Moulay Slimane University, Morocco

Khalid Hilal |
LMACS, FST of Beni Mellal, Sultan Moulay Slimane University, Morocco

Ahmed Kajouni |
LMACS, FST of Beni Mellal, Sultan Moulay Slimane University, Morocco


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_7780_2b93a7329b3a9ec4f08257915d078b09.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات