این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۴، شماره ۳، صفحات ۱۵۳-۱۶۲

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Space-time Muntz spectral collocation approach for parabolic Volterra integro-differential equations with a singular kernel
چکیده انگلیسی مقاله We consider a type of Volterra integro-differential equations of the parabolic type that arise naturally in the study of heat flow in materials with memory. We present a simple and accurate numerical method for problems with a weakly singular kernel subject to an initial condition and given boundary conditions. In this method, both the space and time discretizations are based on the Muntz-Legendre collocation method that converts the problem to a system of algebraic equations. For numerical stability purposes, the Muntz-Legendre polynomials and their partial derivatives are stated in terms of Jacobi polynomials. Moreover, to deal with the weakly singular integral term of the problem, two efficient schemes based on the integration by parts and nonclassical Gaussian quadrature are derived. Comparisons between the two proposed schemes and other methods in the literature are made to demonstrate the efficiency, convergence and superiority of our method in the space and time directions.
کلیدواژه‌های انگلیسی مقاله Parabolic integro-differential equation, Heat flow, Singular kernel, Muntz-Legendre collocation, Nonclassical Gauss quadrature formulas

نویسندگان مقاله Bahareh Sadeghi |
Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

Mohammad Maleki |
Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

Homa Almasieh |
Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_6897_f2f92a6c1dd705ccb7edec6e5bb66286.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات