این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Medical Signals and Sensors، جلد ۱۳، شماره ۱، صفحات ۱۱-۲۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی An Efficient Method for Classification of Alcoholic and Normal Electroencephalogram Signals Based on Selection of an Appropriate Feature
چکیده انگلیسی مقاله Background: Alcohol addiction contributes to disorders in brain`s normal patterns. Analysis of electroencephalogram (EEG) signal helps to diagnose and classify alcoholic and normal EEG signal. Methods: One-second EEG signal was applied to classify alcoholic and normal EEG signal. To determine discriminative feature and EEG channel between the alcoholic and normal EEG signal, different frequency and non-frequency features of EEG signal, including power of EEG signal, permutation entropy (PE), approximate entropy (ApEn), katz fractal dimension (katz FD) and Petrosion fractal dimension (Petrosion FD) were extracted from alcoholic and normal EEG signal. Statistical analysis and Davis-Bouldin criterion (DB) were utilized to specify and select most discriminative feature and EEG channel between the alcoholic and normal EEG signal. Results: Results of statistical analysis and DB criterion showed that the Katz FD in FP2 channel showed the best discrimination between the alcoholic and normal EEG signal. The Katz FD in FP2 channel showed the accuracies of 98.77% and 98.5% by two classifiers with 10-fold cross validation. Conclusion: This method helps to diagnose alcoholic and normal EEG signal with the minimum number of feature and channel, which provides low computational complexity. This is helpful to faster and more accurate classification of normal and alcoholic subjects.
کلیدواژه‌های انگلیسی مقاله Alcoholism, Davies–Bouldin criterion, electroencephalogram signal, K-nearest neighbor classifier, time–frequency features

نویسندگان مقاله | Maryam Dorvashi
Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran, 2 Digital Processing and Machine Vision Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran


| Neda Behzadfar
Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran, 2 Digital Processing and Machine Vision Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran


| Ghazanfar Shahgholian



نشانی اینترنتی http://jmss.mui.ac.ir/index.php/jmss/article/view/643
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده Original Articles
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات