مدیریت فناوری اطلاعات، جلد ۱۲، شماره Special Issue: Deep Learning for Visual Information Analytics and Management.، صفحات ۳-۳۵

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A Deep Learning Based Analysis of the Big Five Personality Traits from Handwriting Samples Using Image Processing
چکیده انگلیسی مقاله Handwriting Analysis has been used for a very long time to analyze an individual’s suitability for a job, and is in recent times, gaining popularity as a valid means of a person’s evaluation. Extensive Research has been done in the field of determining the Personality Traits of a person through handwriting. We intend to analyze an individual’s personality by breaking it down into the Big Five Personality Traits using their handwriting samples. We present a dataset that links personality traits to the handwriting features. We then propose our algorithm - consisting of one ANN based model and PersonaNet, a CNN based model. The paper evaluates our algorithm’s performance with baseline machine learning models on our dataset. Testing our novel architecture on this dataset, we compare our algorithm based on various metrics, and show that our novel algorithm performs better than the baseline Machine Learning models.
کلیدواژه‌های انگلیسی مقاله computer vision,Convolutional neural networks,Artificial Neural Networks,Machine learning,Big Five Personality Traits,handwriting,Graphology

نویسندگان مقاله Ahmed A. Elngar |
Assistant Prof., Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni Suef, 62511, Egypt.

Nikita Jain |
Assistant Prof., Department of Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, New Delhi, India.

Divyanshu Sharma |
Department of Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, New Delhi, India.

Himani Negi |
Department of Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, New Delhi, India.

Anuj Trehan |
Department of Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, New Delhi, India.

Akash Srivastava |
Department of Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, New Delhi, India.


نشانی اینترنتی https://jitm.ut.ac.ir/article_78884_2959805560be5b0bf7a105aad7477728.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات